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EXISTENCE OF APPROXIMATE HERMITIAN-EINSTEIN

STRUCTURES ON SEMI-STABLE BUNDLES∗

ADAM JACOB†

Abstract. The purpose of this paper is to investigate canonical metrics on a semi-
stable vector bundle E over a compact Kähler manifold X. It is shown that if E is semi-
stable, then Donaldson’s functional is bounded from below. This implies that E admits
an approximate Hermitian-Einstein structure, generalizing a classic result of Kobayashi for
projective manifolds to the Kähler case. As an application some basic properties of semi-
stable vector bundles over compact Kähler manifolds are established, such as the fact that
semi-stability is preserved under certain exterior and symmetric products.
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1. Introduction. The existence of canonical metrics is a fundamental problem
in differential geometry. Given a holomorphic vector bundle E over a compact complex
Hermitian manifold X , a natural metric one could hope to find is a Hermitian-Einstein
metric. Specifically this is a metric H on E whose curvature endomorphism F satisfies
the following differential equation:

gjk̄Fk̄j = µI

where µ is a fixed constant and gk̄j is a Hermitian metric on T 1,0X . This problem
has been solved, first by Narasimhan and Seshadri in the case of curves [19], then
for algebraic surfaces by Donaldson [7], and for higher dimensional Kähler manifolds
by Uhlenbeck and Yau [28]. Using the C0 estimate of Uhlenbeck and Yau, Simpson
solved this equation on Higgs bundles and certain non-compact manifolds [24]. Buch-
dahl extended Donaldson’s result to arbitrary complex surfaces in [4], and Li and Yau
generalized the Donaldson-Uhlenbeck-Yau theorem to any compact complex Hermi-
tian manifold in [16]. A detailed account of the case of Gauduchon metrics can also
be found in the book of Lübke and Teleman [17]. Most importantly for the purposes
of this paper, in [3] Bando and Siu were able to extend this theory to metrics on the
locally free part of coherent sheaves.

In all cases, the existence of a Hermitian-Einstein metric requires an algebraic
notion of stability. We say E is stable (in the sense of Mumford-Takemoto) if for
every proper coherent subsheaf F ⊂ E,

deg(F)

rk(F)
<
deg(E)

rk(E)
.

With this definition, any irreducible vector bundle E admits a Hermitian-Einstein
metric if and only if it is stable. Furthermore the proof of Simpson, and the proof
of Siu in [25] rely on the fact that a certain functional is bounded from below. This
functional, introduced by Donaldson in [7], is defined on Kähler manifolds and com-
pares two metrics H0 and H on E. We denote it by M(H0, H, ω), where ω is the
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Kähler form on X . For fixed H0, its gradient flow is given by:

(1.1) H−1∂tH = −(gjk̄Fk̄j − µI),

and one can see that at a critical point of this functional the metric will be Hermitian-
Einstein. With this functional in mind, we can now state the following version of the
Donaldson-Uhlenbeck-Yau Theorem:

Theorem 1. Let E be an indecomposable vector bundle over a compact Kähler
manifold X. Then the following conditions are equivalent:

i) E is stable.

ii) For any fixed metric H0 on E, the Donaldson functional M(H0, H, ω) is
bounded from below and proper.

iii) E admits a Hermitian-Einstein metric.

While this is an extremely powerful theorem, it leaves many questions unan-
swered, in particular: What if the bundle is not stable? Does there exist some sort of
canonical metric in this case?

In this direction there has been relatively few results, although recently this prob-
lem has been addressed over surfaces by Daskalopoulos and Wentworth in [6]. They
proved that for a vector bundle E over a compact Kähler surface, the Yang-Mills
flow converges to a new metric off the singular set of the graded Harder-Narasimhan-
Seshadri filtration. We denote this filtration as Gr(E), and it has finite singular set
since it is a torsion free sheaf over a surface. The main analytic tool used in proving
this result is a compactness theorem of Uhlenbeck, which states that a sequence of
connections along the Yang-Mills flow converges (after going to a subsequence and
away from a singular set) to a Yang-Mills connection on a bundle with possibly a dif-
ferent topology than E. Daskalopoulos and Wentworth were able to identify this new
bundle as Gr(E)∗∗ and the limiting connection as coming from a Hermitian-Einstein
metric on each of the stable quotients forming Gr(E)∗∗. Thus they were able to ver-
ify a conjecture of Bando and Siu in the surface case, that the Yang Mills flow will
“break-up” the connection on an un-stable bundle into Hermitian-Eintein connections
on the stable quotients of the Harder-Narasimhan-Seshadri filtration [3].

With this result in mind, it would be nice to explore the Bando-Siu conjecture
in higher dimensional cases. In this paper we provide some progress towards the
semi-stable case. We say that E is semi-stable if for every proper coherent subsheaf
F ⊂ E,

deg(F)

rk(F)
≤
deg(E)

rk(E)
.

Our main result is to show the condition of semi-stability is equivalent to the existence
of an approximate Hermitian-Einstein structure, which means for all ǫ > 0, there
exists a metric H on E with curvature F such that:

sup
X
|gjk̄Fk̄j − µI|C0 < ǫ.

We state our complete result here:

Theorem 2. Let E be a holomorphic vector bundle over a compact Kähler man-
ifold X. Then the following conditions are equivalent:
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i) E is semi-stable.

ii) For any fixed metric H0 on E, the Donaldson functional M(H0, H, ω) is
bounded from below.

iii) E admits an approximate Hermitian-Einstein structure.

When X is a projective manifold, this theorem was first proven by Kobayashi
in [15]. There Kobayashi also conjectures that the result should be true for general
compact Kähler manifolds, the main difficulty being finding a proof of the lower bound
of M(H0, H, ω) from semi-stability without using certain algebraic facts. We present
such a proof in this paper, and are thus able to extend Kobayashi’s theorem to the
Kähler case.

A particularly important feature of the proof of Theorem 2 is that the analytic
property of the lower boundedness of a functional is deduced directly from the al-
gebraic property of semi-stability. This may be useful for the analogous question
in the problem of constant scalar curvature Kähler metrics. The analogue of the
Donaldson functional is in this case the Mabuchi K-energy [18], and several ana-
logues of Mumford-Takemoto stability have also been introduced, including Chow-
Mumford stability, K-stability (Tian [27], Donaldson [11]), uniform K-stability (Szeke-
lyhidi [26]), slope-stability (Ross-Thomas [23]), b-stability (Donaldson [13]), as well
as infinite-dimensional notions (Donaldson [9], Phong-Sturm [20, 22] and references
therein). Donaldson [12] has shown that Chow-Mumford stability implies the lower
boundedness of the K-energy. It would be very instructive if similar implications can
be established directly from the other notions of stability. The lower boundedness of
the K-energy is an important geometric property in itself. It implies the vanishing of
the Futaki invariant, and plays an important role in the Kähler-Ricci flow (see e.g.
[20, 21]), which is a more non-linear analogue of the gradient flow of the Donaldson
functional.

Another potentially interesting feature of Theorem 2 is its proof: a fundamental
use is made of the regularization of sheaves, building on the works of Buchdahl [4]
and Bando-Siu [3], and it is likely that such regularizations could be relevant to the
Bando-Siu conjecture.

We briefly describe the proof of Theorem 2. The proof of the lower bound is a
direct generalization of Donaldson’s proof that M(H0, H, ω) is bounded from below
in the semi-stable case if X is a curve. That proof relies on the fact that for any
semi-stable vector bundle E, one can find a destabilizing subbundle S with quotient
bundle Q such that S is stable and Q is semi-stable. Then the functional M on E
breaks up into the corresponding Donaldson functionals on S and Q. Since S is stable,
that piece is bounded from below. Q is semi-stable, and of strictly less rank than E,
so by induction we can keep going until we have rank one bundles, which are stable
and thus the Donaldson functional is bounded from below.

For us the key difficulty is that the destabilizing objects S and Q may not be
vector bundles (as in the case of curves), but only torsion free sheaves. Thus the
bulk of the work goes into defining the functional and corresponding terms on a
torsion-free subsheaf S with quotient Q. We view these sheaves as holomorphic vector
bundles off their singular locus, and the main difficulty is that the induced metrics
on these sheaves blow up or degenerate as we approach the singular set. The key
tool to help us through this difficulty is an explicit regularization procedure which
generalizes a procedure of Buchdahl (from [4]). After a finite number of blowups,
denoted π : X̃ −→ X , we can pull back and alter these subsheaves to get smooth
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vector bundles S̃ and Q̃ on X̃. Degenerate metrics on S and Q can now be indentified
with smooth metrics on S̃ and Q̃, allowing many of the desired terms to be computed
in this smooth setting, including the Donaldson functional. It also helps with the
induction step since now we break apart the Donaldson functional on Q̃, which is a
smooth vector bundle with smooth metric, so we only have to worry about subsheaves
of smooth vector bundles, and not subsheaves of torsion free sheaves. The proof
also relies heavily on the work of Bando and Siu [3], and since we use a different
regularization procedure than they used, we find it useful to go over some of the
important estimates in our case.

The paper is organized as follows: In section 2 we describe our setup, define
induced metrics and state some preliminary results about induced metrics. In section
3 we describe our regularization procedure, and show how to compare induced metrics
with new smooth metrics on the regularized spaces. We also show how many of the
associated curvature terms compare. In section 4 we define the Donaldson functional
on sheaves and show it is bounded from below with the assumption that M has a
lower bound on stable sheaves. In section 5, we go over the proof that M is bounded
below on stable sheaves. Finally in section 6, we provide some applications of our
main theorem.

Acknowledgements. First and foremost, the author would like to thank his
thesis advisor, D.H. Phong, for suggesting this problem and for all his advice and
support. The author would also like to thank Thomas Nyberg, Tristan Collins, and
Luis Garcia for many enlightening discussions while writing this paper. Finally, the
author is grateful to Valentino Tosatti for many helpful comments and for suggesting
Corollary 5. This research was supported in part by the National Science Foundation
grant DMS-07-57372, as well as grant DMS-1204155. The results of this paper are
part of the author’s Ph.D. thesis at Columbia University.

2. Preliminaries. We begin with some basic facts about holomorphic vector
bundles. We also define induced metrics on subsheaves and quotient sheaves.

Let E be a holomorphic vector bundle over the Kähler manifold X . Locally the
Kähler form is given by:

ω =
i

2π
gk̄j dz

j ∧ dz̄k,

where gk̄j is a Hermitian metric on the holomorphic tangent bundle T 1,0X . Let Λ
denote the adjoint of wedging with ω. If η is a (p+ 1, q+ 1) form, then Λη is a (p, q)
form with local coeficients gjk̄ηQ̄P k̄j , where P and Q are multi-indices of length p and

q. The volume form on X is given by ωn

n! . For simplicity we write ωn for the volume

form and denote ωn−1

n−1! by ωn−1. One can check that for a (1, 1) form ζ, we have

(Λζ)ωn = ζ∧ωn−1. Assume that E carries a smooth Hermitian metric H . On a local
trivialization, for any section φα ∈ Γ(X,E) we define the unitary-Chern connection
by:

∇k̄φ
α = ∂k̄φ

α and ∇jφ
α = ∂jφ

α +Hαβ̄∂jHβ̄γφ
γ .

The curvature of this connection is an endomorphism valued two form:

F := Fk̄j
α
γ dz

j ∧ dz̄k,



APPROXIMATE HERMITIAN-EINSTEIN STRUCTURES 863

where Fk̄j
α
γ = −∂k̄(H

αβ̄∂jHβ̄γ). We can compute the degree of E as follows:

(2.2) deg(E) =
i

2π

∫

X

Tr(F ) ∧ ωn−1,

and since X is Kähler this definition is independent of a choice of metric on E. In
the future for notational simplicity we drop the factor i

2π as it plays no role in the
arguments presented. We define the slope of E to be

µ(E) :=
deg(E)

rk(E)
.

Given a torsion free subsheaf S of E, we can construct the following short exact
sequence:

(2.3) 0 −→ S
f
−−−→ E

p
−−−→ Q −→ 0,

where we assume that the quotient sheaf Q is torsion free (by saturating S if neces-
sary). We define the singular set of Q to be Z := {x ∈ X |Qx is not free}. Then
on X\Z, we can view (2.3) as a short exact sequence of holomorphic vector bundles.
Here, a smooth metric H on E induces a metric J on S and a metric K on Q. For
sections ψ, φ of S, we define the metric J as follows:

〈φ, ψ〉J = 〈f(φ), f(ψ)〉H .

In order to define K on Q, we note that a choice of a metric H on E gives a splitting
of (2.3):

(2.4) 0←− S
λ

←−−− E
p†

←−−−− Q←− 0.

Here λ is the orthogonal projection from E onto S with respect to the metric H . For
sections v, w of Q, we define the metric K as:

〈v, w〉K = 〈p†(v), p†(w)〉H .

Definition 1. On X\Z both S and Q are holomorphic vector bundles. We
define an induced metric on either Q or S to be one constructed as above.

Once we have sequence (2.4), the second fundamental from γ ∈ Γ(X,Λ0,1 ⊗
Hom(Q,S)) is given by:

γ = ∂̄ ◦ p†.

We know that for any q ∈ Γ(X\Z,Q), γ(q) lies in S since p is holomorphic and
p ◦ p† = I, thus p (∂̄ ◦ p†(q)) = 0. Now, because the maps f and p degenerate
on Z, any induced metric may degenerate as we approach the singular set, causing
curvature terms to blow up. However, these singularities are not too bad, and the
following proposition tells us what control we can expect.

Proposition 1. The second fundamental form of an induced metric is in L2,
and we have:

∫

X\Z

gjk̄Tr (γ†jγk̄)ω
n ≤ C.
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We prove this proposition in section 3. We now recall how the curvature on E
decomposes onto subbundles and quotient bundles (for instance see [14]). Let F be
the curvature of H , and denote the curvature of the induced metric J by FS and the
curvature of the induced metric K by FQ. We have:

(2.5) FS = F |S + γ ∧ γ†

and

(2.6) FQ = F |Q + γ† ∧ γ.

Combining these two formulas with the fact that F is smooth implies the following
result:

Proposition 2. The curvature of an induced metric is in L1.

With this proposition we see that formula (2.2) is well defined for an induced
metric, and we use the formula to compute the degree of S and Q.

3. Regularization of sheaves. In this section we give a procedure to regularize
the short exact sequence (2.3). This procedure generalizes a procedure of Buchdahl
from [4] to the higher dimensional case. The main difference is that we do not attempt
to regularize arbitrary torsion free sheaves over a Hermitian manifold, we only address
the specific case where we have a subsheaf of a vector bundle E. In fact, one can view
this procedure as a way to regularize the map f so its rank does not drop, allowing
us to define a new holomorphic subbundle and quotient bundle. We go over a simple
example first which illustrates many of the key points.

Consider the ideal sheaf I of holomorphic functions vanishing at the origin in C2.
We can write it as the following holomorphic quotient:

0 −→ O
f
−−−→ O2 p

−−−→ I −→ 0,

where the maps are given in matrix form by:

f =

(

z1
z2

)

p =
(

−z2 z1
)

.

We blowup at the origin π : C̃2 −→ C2, and let D = π−1(0). Pulling back the short
exact sequence we get:

0 −→ O
π∗f
−−−−−→ O2 π∗p

−−−−−→ π∗I −→ 0

(here we are implicitly using the fact that π∗OC2
∼= O

C̃2). C̃2 can be covered by two
coordinate patches Ui := {zi 6= 0}, i = 1, 2. On U1 we have coordinates w1 = z1 and
w2 = z2

z1
, and we can write our maps as:

π∗f =

(

1
w2

)

w1 π∗p =
(

−w2 1
)

w1.

Similarly on U2 we define coordinates ζ1 = z1
z2

and ζ2 = z2. Now we define the map

f̃ : O(D)→ O2 by 1
w1
π∗f on U1 and 1

ζ2
π∗f on U2. This map has domain O(D) since
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we need to multiply local sections on U1 by z2
z1

to get a map on U2 with the same

image in O2. Thus we get a new short exact sequence:

0 −→ O(D)
f̃
−−−→ O2 p̃

−−−→ O2/O(D) −→ 0,

which we say is regularized since now the rank of f̃ does not drop anywhere. Since
we know what p̃ is on each coordinate patch, we can explicitly compute the transition
functions of O2/O(D) in this construction. Given a section (η1, η2) of O2, then on
U1 p̃((η1, η2)) = −

z2
z1
η1 + η2 and on U2 we have p̃((η1, η2)) = −η1 +

z1
z2
η2. Thus the

transition function from U1 to U2 is multiplication by z1
z2
, so in this case O2/O(D) ∼=

O(−D). Now the regularized sequence can be expressed as:

0 −→ O(D)
f̃
−−−→ O2 p̃

−−−→ O(−D) −→ 0.

With this example in mind, we now turn to the general procedure.
Once again consider the short exact sequence over X :

0 −→ S
f
−−−→ E

p
−−−→ Q −→ 0,

with E locally free and Q torsion free. Suppose S has rank s, E has rank r, and Q has
rank q. In section 2 we defined the singular set Z of Q, and off this set we can view
this sequence as a short exact sequence of holomorphic vector bundles. After choosing
coordinates, off of Z we view f as a r × s matrix of holomorphic functions with full
rank. As one approaches Z the rank of f may drop, and it is exactly this behavior
that we need to regularize before we can carry out the analysis in later sections.

Let Zk be the subset of Z where rk(f) ≤ k. For the smallest such k, at a point
we can choose coordinates so that f can be expressed as

f =

(

Ik 0
0 g

)

,

where g vanishes identically on Zk. Blowing up along Zk by the map π : X̃ −→ X ,
on a given coordinate U patch let w define the exceptional divisor. Then the pullback
of f can be decomposed as follows:

(3.7) π∗f =

(

Ik 0
0 g̃

)(

Ik 0
0 waIs−k

)

,

where a is the largest power of w we can pull out of the π∗g. Denote the matrix on
the left as f̃ and the matrix on right as t. We would like to define S̃ as the image of
the sheaf S under the map t. Working off π−1(Z), if V is another open set we know
π∗S is a holomorphic vector bundle with transition functions {ΦUV } so that for a
section ψρ of π∗S,

ψρ|U = ΦUV
ρ
γψ

γ |V .

With this in mind, the transition functions {Φ̃UV } of S̃ can be expressed as:

Φ̃UV
ρ
γ =

(wU )
aγ

(wV )aρ
ΦUV

ρ
γ .
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Here aγ is equal to 0 if γ ≤ k or a if γ > k, and wU defines the exceptional divisor on
U (and wV for V ). Although these transition functions may blow up as we approach
π−1(Z), they are useful in understanding how the map t twists up S. Now the map
f̃ defines a new holomorphic inclusion of the sheaf S̃ into the bundle π∗E, with a
new quotient Q̃. Of course, the rank of f̃ may still drop, but one of two things has
happened. Either rk(f̃) > k on π∗(Zk), or for all x ∈ Zk, if mx is the maximal ideal
at the point x, then the smallest power p such that mp

x
sits inside the ideal generated

by the vanishing of g̃ is smaller than that of g. In either case we have improved the
regularity of f . Of course, this procedure is done in local coordinates, and since X is
compact we know Zk is covered by a finite number of open sets. After a finite number
of blowups we can conclude that rk(f̃) > k everwhere. Thus we can next blowup
along Zk+1 and continue this process until the rank of f̃ does not drop.

Once the rank does not drop anywhere we have that the map f̃ is holomorphic
on X̃. It defines a holomorphic subbundle S̃ of π∗E with holomorphic quotient Q̃.
Summing up, we have proven the following proposition:

Proposition 3. Over a compact manifold X, let S be a torsion free subsheaf of
E with torsion free quotient. There exits a finite number of blowups

X̃N
πN−−−−→ X̃N−1

πN−1

−−−−−−→ · · ·
π2−−−−→ X̃1

π1−−−−→ X,

and maps fk over X̃k with the the following properties:

i) On each X̃k around a given point there exits coordinates so that if w defines
the exceptional divisor, there exits a diagonal matrix of monomials in w (denoted t)
so that

π∗
k−1fk−1 = fk t.

ii) The rank of fN is constant on X̃N , thus it defines a holomorphic subbundle of
π∗
N ◦ · · · ◦ π

∗
1E with a holomorphic quotient bundle.

We note that this procedure is consistent with another viewpoint found in Uhlen-
beck and Yau [28]. In their paper they view a torsion free sheaf locally as a rational
map from X to the Grassmanian Gr(s, r) (this is our map f). By Hironaka’s Theo-
rem we know this map can be regularized after a finite number of blowups. We follow
our procedure in order to find coordinates which let us keep track of how that map
changes at each step, and in doing so we can work out how the induced metrics on S̃
and Q̃ change during each step.

3.1. Induced metrics on regularizations. We now compute how induced
metrics change during regularization. First we need a good local description of these
metrics. Recall the short exact sequence (2.3). Since we view S and Q as holomorphic
vector bundles off Z, we consider local trivializations for these bundles away from the
singular set, and in these coordinates the map f is a matrix of holomorphic functions.
For any section φα ∈ Γ(X,S), we write f(φ) = fγ

αφ
α ∈ Γ(X,E). The induced metric

Jβ̄α is defined by

Jβ̄αφ
αφβ = Hρ̄νf

ν
αφ

αfρ
βφβ ,

so we have

(3.8) Jβ̄α := Hρ̄νf
ν
αfρ

β
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in our local trivialization for S.
The induced metric Kβ̄α is defined similarly. Let qα ∈ Γ(X,Q). If we recall the

splitting (2.4), then in local coordinates the metric Kβ̄α is given by

Kβ̄αq
αqβ = Hρ̄ν p

†ν
αq

α p†
ρ
βqβ ,

so

(3.9) Kβ̄α := Hρ̄ν p
†ν

αp†
ρ
β .

In many cases it will be easier to work with the projection λ as opposed to p†.
Using the fact that p is surjective we write q = p(V ) for some V ∈ Γ(X,E). Then
p†(q) = p†p(V ) = (I − λ)V . Thus the formula

|q|2K = |(I − λ)V |2H

describes the metric K along with (3.9). We note that V is not unique, however given
another V ′ such that p(V ′) = q, then p(V −V ′) = 0, and since (2.3) is exact we know
(I − λ)(V − V ′) = 0. This justifies the alternate definition of K.

Proposition 4. Consider a single blowup from the regularization procedure π :
X̃ −→ X. Let J and K be metrics induced by f and J̃ and K̃ be metrics induced by
f̃ , where f̃ is defined by (3.7). Then if w locally defines the exceptional divisor, there
exists non-negative integers aα so that:

π∗Jβ̄α = waαwaβ J̃β̄α π∗Kβ̄α =
1

waαwaβ
K̃β̄α.

Proof. By (3.7) we know how π∗f decomposes, thus from (3.8) we can see that:

π∗Jβ̄α = π∗Hρ̄νπ
∗fρ

απ∗fν
β = π∗Hρ̄νw

aα f̃ρ
αwaβ f̃ν

β = waαwaβ J̃β̄α.

This tells us how the local description of Jβ̄α changes during each step of the regular-
ization. How Kβ̄α changes is a little more difficult to see. We note that at each point

in X̃ the projection λ from π∗E onto the image of π∗f is equal to the projection λ̃ onto
the image of f̃ . This follows because the only difference between the matrices π∗f
and f̃ is multiplication by the diagonal matrix t (from (3.7)), which only changes the
length of each column vector, not the span of the columns. Thus for V ∈ Γ(X̃, π∗E),
we have

(I − λ)(V ) = (I − λ̃)(V ).

We need a formula for how p† changes under regularization. First we note that on Q
the map p ◦ p† is the identity, so for q a section of π∗Q we have:

π∗p π∗p†(q) = q.

We now write π∗p = w̃p̃, where w̃ is a diagonal matrix given by monomials of sections
defining the exceptional divisor. So w̃p̃ π∗p†(q) = q, and because w̃ is invertible it
follows:

(3.10) p̃ π∗p†(q) = w̃−1q.
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Now since the metric π∗H on π∗E gives a splitting of the following sequence:

0 −→ S̃
f̃
−−−→ π∗E

p̃
−−−→ Q̃ −→ 0,

we have a map p̃† : Q̃→ π∗E. Applying this map to each side of (3.10) we get:

p̃†w̃−1q = p̃†p̃ π∗p†(q)

= (I − λ̃)π∗p†(q)

= (I − λ)π∗p†(q)

= π∗p†(q),

where the last line follows from the fact that π∗p† is already perpendicular to the
image of π∗f . Thus we have shown π∗p† = p̃†w̃−1, and plugging this into the formula
for the metric we have:

π∗Kβ̄αs
αsβ = Hν̄ρ π

∗p†
ρ
α s

α π∗p†νβ sβ

=
1

waαwaβ
Hν̄ρ p̃

†ρ
α s

α p̃†νβ sβ

=
1

waαwaβ
K̃β̄αs

αsβ .

This completes the proof of the proposition.

3.2. Transformation of curvature terms. Now that we know how induced
metrics change after each step in the regularization procedure, we can compute how
the associated curvature terms change. In this section all computations are local,
and we restrict ourselves to working with the sheaf Q with induced metric K, since
all computation involving the subsheaf S are similar. From now on let F denote
the curvature of K. First we compute how the trace of curvature changes under
regularization.

Lemma 1. For a single blowup in the regularization procedure π : X̃ −→ X, let w
locally define the exceptional divisor. Then the following decomposition holds in the
sense of currents:

π∗Tr(F ) =
∑

α

aα∂∂̄ log |w|
2 +Tr(F̃ ).

Along the course of proving the lemma we will also give a formula for π∗F in
terms of F̃ .

Proof. We work in a local trivialization and apply Proposition 4:

π∗Fk̄j
α
β = −∂k̄(π

∗Kαγ̄∂jπ
∗Kγ̄β)

= −∂k̄(K̃
αγ̄waαwaγ∂j(

1

waβwaγ
K̃γ̄β)).

Now since waγ is anti-holomorphic, it follows that

π∗Fk̄j
α
β = −∂k̄(K̃

αγ̄waα∂j(
1

waβ
K̃γ̄β))

= −∂k̄(w
aα∂j(

1

waβ
)K̃αγ̄K̃γ̄β +

waα

waβ
K̃αγ̄∂jK̃γ̄β)

= aα∂j∂k̄log|w|
2δαβ − ∂k̄(

waα

waβ
K̃αγ̄∂jK̃γ̄β).(3.11)
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We can use this last line as a formula for the transformation of F . Taking the trace
proves the lemma.

Because we need to deal with the pullback of Kähler forms under the blowup
map, we extend the definition of degree to include these degenerate metrics.

Definition 2. Let E be a vector bundle on X̃, where X̃ is given by a blowup
map π : X̃ −→ X . Let FE be the curvature of a given metric H on E, and let ω be
a Kähler metric on X . Then the degree of E with respect to π∗ω is given by:

deg(E, π∗ω) =

∫

X̃

Tr(FE) ∧ π∗ωn−1.

Even though the metric π∗ω is degenerate on the exceptional divisor, since π∗ω
is closed this definition is independent of the choice of metric on E. Once again if Q
is a torsion free sheaf and the curvature of Q is L1 on the locally free part of Q, then
this definition extends from vector bundles to torsion free sheaves.

In the following lemma asserts that the degree of a sheaf is constant under our
regularization procedure as long as we compute with respect to the correct degenerate
metrics.

Lemma 2. Let Q̃ be the regularization of the sheaf Q, and let πN represent the
composition of blowups needed in the regularization. The following formula holds:

deg(Q,ω) = deg(Q̃, π∗
Nω).

Proof. By Proposition 2 we see the degree of Q is given by:

deg(Q,ω) =

∫

X

Tr(F ) ∧ ωn−1.

We now pullback this quantity by the blowup map and regularize Q. During each
step in the procedure we have:

∫

X

Tr(F ) ∧ ωn−1 =

∫

X̃

π∗Tr(F ) ∧ π∗ωn−1

=

∫

X̃

(
∑

α

aα∂∂̄ log |w|
2 +Tr(F̃ )) ∧ π∗ωn−1

=

∫

X̃

Tr(F̃ ) ∧ π∗ωn−1,

since π∗ω becomes degenerate along the support of ∂∂̄ log |w|2. We continue the
regularization procedure and after a finite number of blowups F̃ will be smooth. The
integral stays the same after each step.

Proposition 1 also follows from Lemma 1, and we now present the proof:

Proof of Proposition 1. To prove this result we show that after each step in the
regularization procedure ||γ||2L2(X) = ||γ̃||

2
L2(X̃)

, thus after a finite number of blowups

||γ̃||2
L2(X̃)

will be an integral on a smooth vector bundle over a compact manifold and

thus bounded. From (2.6) it follows that that:

Tr (γ† ∧ γ) = Tr (F )− Tr ((I − λ) ◦ FE).
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Let π be a single blowup in our regularization procedure. Pulling back by π we
compute:

||γ||2L2(X) =

∫

X̃

π∗Tr (γ† ∧ γ) ∧ π∗ωn−1

=

∫

X̃

(Tr (F̃ ) +
∑

α

aα∂∂̄ log |w|
2) ∧ π∗ωn−1

−

∫

X̃

Tr ((I − λ) ◦ FE) ∧ π∗ωn−1

=

∫

X̃

Tr (F̃ ) ∧ π∗ωn−1 − Tr ((I − λ̃) ◦ FE) ∧ π∗ωn−1

=

∫

X̃

Tr (γ̃† ∧ γ̃) ∧ π∗ωn−1.

Here we used the fact that the projection λ̃ is equal to the projection λ, which we
saw in the proof of Proposition 4. This completes the proof of the proposition.

4. The Donaldson functional on regularizations. In this section we extend
the definition of the Donaldson functional to include metrics on torsion free subsheaves
S and Q. This definition only works for induced metrics, and does not extend to
arbitrary metrics defined on the locally free parts of S and Q. First we go over the
definition of the Donaldson functional on the vector bundle E.

Fix a reference metric H0 on E. For any other metric H define the endomor-
phism h = H−1

0 H , and let Herm+(E) denote the space of positive definite hermitian
endomorphisms of E. For t ∈ [0, 1], consider any path ht ∈ Herm

+(E) with h0 = I
and h1 = h, and let Ft be the curvature of the metric Ht := H0 ht along the path.
Then the Donaldson functional is given by:

M(H0, H, ω) =

∫ 1

0

∫

X

Tr(Fth
−1
t ∂tht) ∧ ω

n−1 dt−
µ(E)

vol(X)

∫

X

log det(h1)ω
n.

One can check that this definition is independent of the choice of path (for instance
see [25]). Given a blowup map π : X̃ −→ X , one can also define the Donaldson
functional on a vector bundle over X̃ by integrating with respect to the degenerate
metric π∗ω. Since π∗ω is closed the functional will still be independent of path. We
now define the Donaldson functional on the sheaves S and Q as follows:

Definition 3. For a subsheaf S of E, we define the Donaldson functional on S
to be:

MS(H0, H, ω) :=MS̃(J̃0, J̃ , π
∗ω),

for any regularization S̃. Similarly we define the Donaldson functional on the quotient
sheaf Q to be:

MQ(H0, H, ω) :=MQ̃(K̃0, K̃, π
∗ω),

for the regularization Q̃ corresponding to S̃.

Here MS̃(J̃0, J̃ , π
∗ω) and MQ̃(K̃0, K̃, π

∗ω) are the Donaldson functionals for the

vector bundles S̃ and Q̃ defined using the degenerate metric π∗ω. We note that the
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domains of the functionals MS and MQ are metrics on the vector bundle E, thus this
definition only applies to induced metrics and does not extend to arbitrary metrics
on S and Q. In the following proposition we show that this definition makes sense.

Proposition 5. MS and MQ are well defined functionals for any pair of metrics
on E and are independent of the choice of regularization.

Proof. Since the regularization procedure is not unique, we show the functional
gives the same value independent of the sequence of blowups chosen. Once again, we
prove this proposition for the quotient sheaf Q, as the argument works the same for
S.

As we have seen, a choice of metrics H0 and H on E induce metrics K0 and K
on Q. Furthermore if we regularize Q we get corresponding induced metrics K̃0 and
K̃ on Q̃. Set k̃ = K̃−1

0 K̃ as the endomorphism relating these two metrics, and let k̃t,
t ∈ [0, 1], be any path in Herm+(Q̃) connecting the identity to k̃. We have defined
the Donaldson functional on Q to be the following integral:
(4.12)

MQ(H0, H, ω) =

∫ 1

0

∫

X̃

Tr(F̃tk̃
−1
t ∂tk̃t)π

∗ωn−1dt−
µ(E)

vol(X)

∫

X̃

log det(k̃1)π
∗ωn.

Note that the path k̃t defines a path kt :=
waα

waγ
k̃αγ which is an endomorphism of the

quotient sheaf one step back in the regularization procedure. Similarly the metrics

(K0)β̄α :=
1

waαwaβ
(K̃0)β̄α and Kt := K0kt are defined one step back in the regu-

larization procedure. Let Ft be the curvature of Kt. Then we can compute using
formula (3.11) to get the following equation of currents:

Tr(Ftk
−1
t ∂tkt) ∧ π

∗ωn−1 = (Ft)
α
β(k

−1
t )βγ(∂tkt)

γ
α ∧ π

∗ωn−1

= −∂̄(
waα

waβ
K̃αν̄∂K̃ν̄β)

waβ

waγ
k̃−1β

γ
waγ

waα
∂tk̃

γ
α ∧ π

∗ωn−1

= Tr (F̃ k̃−1∂tk̃) ∧ π
∗ωn−1,

where the third equality holds since w is holomorphic. Thus the first integral does not
change at any step in the regularization procedure and we get the following equality:

(4.13)

∫ 1

0

∫

X̃

Tr(F̃tk̃
−1
t ∂tk̃t)π

∗ωn−1dt =

∫ 1

0

∫

X

Tr(Ftk
−1
t ∂tkt)ω

n−1dt.

Here the integral on the right is only in terms of the initial induced metrics K0 and
K, where the path kt is such that k0 = I and k1 = K−1

0 K. Since the integral in
(4.12) is independent of path, we conclude that the integral in (4.13) is independent
of regularization and depends only on the choice of metrics H0 and H on E. We now
do the same for the second integral of line (4.12).

It helps to write the formula for k1 in matrix notation k1 = t−1k̃1 t, where t is
the matrix defined in (3.7). Thus it is clear that det(k1)=det(k̃1) for each blowup in
the regularization procedure, so once again we can write

∫

X̃

log det(k̃1)π
∗ωn =

∫

X

log det(k1)ω
n,

where the integral on the right only depends on K0 and K. Thus our definition of the
Donaldson functional on Q only depends on the choice of metrics H0 and H on E.
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Now that we have this definition, we state a decomposition result which plays
a major role in the proof of our main theorem. First we assume that S and Q are
genuine holomorphic vector bundles, which have the same slope as E. In [7] Donaldson
proved:

M(H0, H, ω) =MS(J0, J, ω) +MQ(K0,K, ω) + ||γ||
2
L2 − ||γ0||

2
L2 ,

where M(H0, H, ω) is the Donaldson functional on E, and MS(J0, J, ω) and
MQ(K0,K, ω) are the corresponding Donaldson functionals on S and Q. In fact,
we can see right away that this decomposition extends to induced metrics on sheaves.
SinceM(H0, H, ω) =M(π∗H0, π

∗H, π∗ω), we can pull back the functional and look at
the decomposition onto the regularized vector bundles S̃ and Q̃. We get the following
decompoistion:

M(π∗H0, π
∗H, π∗ω) =MS̃(J̃0, J̃ , π

∗ω) +MQ̃(K̃0, K̃, π
∗ω) + ||γ̃||2L2 − ||γ̃0||

2
L2 .

Now since the L2 norm of the second fundamental form is independent of regulariza-
tion we get the following lemma:

Lemma 3. Let S be a torsion free subsheaf of E with torsion free quotient Q. If
S, E, and Q all have the same slope then we have the following decomposition:

M(H0, H, ω) =MS(H0, H, ω) +MQ(H0, H, ω) + ||γ||
2
L2 − ||γ0||

2
L2 .

4.1. A lower bound for the Donaldson functional. In this section we
prove a lower bound for the Donaldson functional on E under the assumption that
MS(H0, H, ω) is bounded from below for S stable, a fact we shall prove in the next
section. We first define a notion of slope and stability with respect to a degenerate
metric, using Definition 2:

Definition 4. Let B be a vector bundle on X̃ , where X̃ is given by a blowup
map π : X̃ −→ X . Then the slope of B with respect to π∗ω is given by:

µ(B, π∗ω) =
deg(B, π∗ω)

rk(B)
.

Definition 5. We say B is stable with respect to π∗ω if for all proper torsion
free subsheaves F ⊂ B, we have

µ(F , π∗ω) < µ(B, π∗ω).

We say B is semi-stable with respect to π∗ω if

µ(F , π∗ω) ≤ µ(B, π∗ω).

Theorem 3. If E is a semi-stable vector bundle over X compact Kähler, than
the Donaldson functional is bounded from below on E.

Proof. E is a semi-stable vector bundle on X , so all destabilizing subsheaves have
the same slope as E. We restrict ourselves to subsheaves which have torsion free
quotients. Choose the one with the lowest rank, which we call S. Then S is stable
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since any proper subsheaf of S would be a subsheaf of E and thus would have lower
slope (since S was chosen with minimal rank). The torsion free quotient Q has the
same slope as S (and E), and is semi-stable.

We now decompose the Donaldson functional into functionals on S and Q using
Lemma 3. In the next section we show MS(H0, H, ω) is bounded from below since S
is stable. ||γ||2L2 is a positive term and ||γ0||

2
L2 is fixed (having only to do with the

fixed initial metric H0), so the only remaining term to check is MQ(H0, H, ω). Since

MQ(H0, H, ω) = MQ̃(K̃0, K̃, π
∗ω) for some regularization Q̃, we choose to show the

latter term is bounded from below, which is helpful since K̃0 and K̃ are now smooth
metrics on a holomorphic vector bundle Q̃. We need to show Q̃ is semi-stable with
respect to π∗ω, that way we can continue this process of decomposing the functional
and use induction on rank. First we prove a few lemmas.

Lemma 4. If E is semi-stable with respect to ω, then π∗E is semi-stable with
respect to π∗ω on X̃.

We note this lemma is false if we use the Kähler metic ωǫ = π∗ω + ǫσ on X̃
(where σ is the pullback of the Fubini-Study metric on the exceptional divisor times
a suitable bump function). It only works since π∗ω degenerates (see [4]).

Proof of Lemma. Suppose π∗E is not semi-stable with respect to π∗ω. Then it
contains a proper subsheaf F of rank p < r such that µ(F , π∗ω) > µ(π∗E, π∗ω) (here
r is the rank of E). Since π is an isomorphism off the exceptional divisor, we have
that µ(π∗F , ω) > µ(E,ω), which would contradict the fact that E is semi-stable if
we can show π∗F is a proper subsheaf of E. Clearly away from Z this is true, and
since it is a set of codimension ≥ 2, off of Z we can view π∗F as a rational map from
X into the Grassmanian Gr(p, r) (see [28]). We can extend this rational map over Z
since E is locally free, thus π∗F is a subsheaf of E.

Lemma 5. If Q̃ is a torsion free quotient with the same slope as π∗E, then Q̃ is
semi-stable with respect to π∗ω.

Proof. Suppose G is a subsheaf of Q̃ with µ(G, π∗ω) > µ(Q̃, π∗ω). Then since we
have the exact sequence

0 −→ G −→ Q̃ −→ Q̃/G −→ 0,

by [15] Lemma (7.3) we know µ(Q̃/G, π∗ω) < µ(Q̃, π∗ω) = µ(π∗E, π∗ω). We define
B := Ker(π∗E → Q̃/G). Then B is included in the following exact sequence:

0 −→ B −→ π∗E −→ Q̃/G −→ 0.

Now once again by [15] Lemma (7.3) we see µ(B, π∗ω) > µ(π∗E, π∗ω), contradicting
the semi-stability of π∗E.

So Q̃ is semi-stable with respect to π∗ω, and we continue this process. Recall that
the vector bundle Q̃ has smooth metrics K̃ and K̃0 induced from H and H0 on E.
Among all subsheaves of Q̃ with the same slope, let S1 be a subsheaf of minimal rank.
Then S1 is stable with quotient Q1, and in the next section we showMS1

(K̃0, K̃, π
∗ω)

is bounded from below. Using Lemma 3, we can reduce the problem to showing the
Donaldson functional is bounded from below on Q1. Blowing up again π1 : X̃1 −→ X̃
and constructing the regularization Q̃1 over X̃1, we see Q̃1 is semi-stable with respect
to π∗

1 ◦ π
∗(ω) by the previous two Lemmas. Since Q̃1 has stricly lower rank than Q̃,

after a finite number of steps the process will terminate since all rank one sheaves are
stable. This proves the lower bound for M(H0, H, ω).
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5. A lower bound for stable sheaves. In this section we show that the Don-
aldson functional MS(H0, H, ω) is bounded from below if S is constructed as in the
proof of Theorem 3. This result relies heavily on [3], in which Bando and Siu prove
that any stable sheaf admits a Hermitian-Einstein metric off its singular locus. How-
ever, the lower bound on the Donaldson functional is not a consequence of this result,
but rather it is an essential step in the proof. This is important from the point of view
of this paper, since we want the proof of the main theorem to only rely on stability
conditions, and not on the existence of any canonical metric. Now, because we use a
different regularization procedure than the procedure described in [3], we choose to
go over parts of the proof here in order to confirm that the necessary details carry
over in our case. Furthermore, our proof of the lower bound is different, especially in
the induction step used in the proof of Theorem 3.

At this point we have only defined the functional MS(H0, H, ω) for induced met-
rics on S (see section 4). However, showing this functional is bounded from below is
by definition equivalent to showingMS̃(J̃0, J̃ , π

∗ω) is bounded from below for smooth

metrics J̃0 and J̃ . We have that the functional MS̃ is actually defined for any pair of

metrics on S̃, allowing us to evolve J̃ by the gradient flow of MS̃ . Assume that ω is
normalized so that

∫

X
ωn = 1.

As a first step to defining the gradient flow we compute the Euler-Lagrange equa-
tion forMS̃ . First we only consider a single blowup, and towards the end of the section
we consider the case when we have a finite number of blowups. Consider the fixed
metric J̃0 and suppose we have a one parameter family of metrics J̃s with J̃1 = J̃ .
Since MS̃ is defined via integration along a path and the integral is path independent,

assume we are integrating along the path h̃s ∈ Herm
+(X̃, S̃) which corresponds to

J̃s = J̃0h̃s. Let F̃s be the curvature of J̃s. The variation of MS̃(J̃0, J̃ , π
∗ω) is given

by:

δMS̃(J̃0, J̃ , π
∗ω) =

∫

X̃

Tr((Λ0F̃1 − µ(S, ω)I)h̃
−1
1 ∂sh̃1)π

∗ωn

(For details of this computation see [25]). Here Λ0 refers to the trace with respect to
the degenerate metric π∗ω. Thus at a critical point of M we have Λ0F̃ = µ(S, ω)I.
We can now consider the flow of metrics on S̃ given by:

(5.14) J̃−1
t ∂tJ̃t = −Λ0F̃t + µ(S, ω)I.

If Jt is any solution to this flow and we define MS̃(t) =MS̃(J̃0, J̃t, π
∗ω), then

∂tMS̃(t) = −

∫

X̃

Tr((Λ0F̃ − µ(S, ω)I)
2)π∗ωn ≤ 0,

which is clearly decreasing. Since the flow decreases the value of MS̃, if it is bounded
below along the flow for any initial metric it is bounded from below in general. A
priori it is not clear that the degenerate flow (5.14) is well defined since π∗gjk̄ blows
up along the exceptional divisor. Thus our first step is to prove existence of a solution.

Theorem 4 (Bando, Siu). Let S̃ be a vector bundle over X̃, where π : X̃ → X
is the blowup of the Kähler manifold X along an analytic subvariety. Let π∗ω be the
degenerate Kähler metric pulled back from X. Then there exists a metric H0 and a
family of metrics H(t) on S̃ such that H(0) = H0 and H(t) satisfies (5.14).

We prove existence by showing the flow is in fact the limit of existing flows. Let
π : X̃ −→ X be the blowup of X on which we construct S̃. On X̃, define the metric
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ω0 := π∗ω . This metric is degenerate along the exceptional divisor, so we adjust it
by adding on a small bump function times the pullback of Fubini-Study metric from
the exceptional divisor, which we call σ (for details see [3],[4],[5]). This gives us a
family of Kähler forms ωǫ on X̃ , given by ωǫ = ω0 + ǫσ. Consider gjk̄ǫ , which is the
inverse of the metric associated to ωǫ. Since ωǫ no longer degenerates we know that
gjk̄ǫ is smooth. We now can define the standard Donaldson heat flow on S̃ with respect
to this new base metric ωǫ. We prove uniform bounds in ǫ, showing we can take a
subsequence as ǫ −→ 0 which converges to our degenerate flow (5.14).

We start out by defining an appropriate conformal change. Set Jǫ,0 = eφǫ J̃ , where
φǫ is defined by the equation

∆ǫφǫ = Tr(−ΛǫF̃ + µ(S̃, ωǫ)I).

This equation admits a smooth solution for ǫ > 0 since the right hand side integrates
to zero against the volume form ωn

ǫ . With these initial starting metrics Jǫ,0, the family
of flows is given by:

(5.15) J−1
ǫ,t ∂tJǫ,t = −ΛǫFǫ,t + µ(S̃, ωǫ)I.

These flows give a family of metrics Jǫ,t that depend on ǫ and t. As before, we
let hǫ,t = J−1

ǫ,0 Jǫ,t. From this point on we may from time to time drop the subscripts
on Jǫ,t and refer to the metric simply as J . To show these flows converge along
a subsequence we need the following uniform bounds for the full curvature tensor
independent of ǫ:

(5.16) ||Fǫ,t||Ck ≤ C,

for all k. This is possible when 0 < t1 ≤ t ≤ t2 < ∞. In fact, we cannot do better
then this, and the bounds fall apart if we send t1 to zero or t2 to infinity. Our first
step is an L1 bound.

Proposition 6. For all time t ≥ 0, we have the estimate

||ΛǫFǫ,t||L1 ≤ C,

independent of ǫ and t.

Proof. To prove the proposition, we need to work out how ΛǫFǫ,t and its norms
evolve along the flow. We drop subscripts for simplicity. To compute the evolution of
curvature, we use a formula from [25]:

∂tFm̄l = ∂t(Fm̄l − F
0
m̄l) = −∂t∇m̄(∇lhh

−1) = −∇m̄∇l(h
−1∂th).

Plugging our flow into this equation, we see

∂tΛF = glm̄∂tFm̄l = −g
lm̄∇m̄∇l(J

−1∂tJ) = glm̄∇m̄∇l(ΛF ) = ∆ΛF = ∆ΛF.

The last equality holds because we are taking the Laplacian of the specific endomor-
phism ΛF . We now compute how the norm squared evolves:

∂t|ΛF |
2 = 〈∂tΛF,ΛF 〉+ 〈ΛF, ∂tΛF 〉.

= 〈∆ΛF,ΛF 〉+ 〈ΛF,∆ΛF 〉.
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We note that only in this specific case of the flow (5.15) acting on |ΛF |2 does the time
derivative does not affect the norm 〈·, ·〉 in the first equality, since all the corresponding
terms cancel. Next, one sees that:

∆|ΛF |2 = 〈∆ΛF,ΛF 〉+ 〈ΛF,∆ΛF 〉+ |∇ΛF |2 + |∇ΛF |2.

Putting these two lines together we see:

(5.17) ∂t|ΛF |
2 = ∆|ΛF |2 − |∇ΛF |2 − |∇ΛF |2.

which implies

∂t|ΛF |
2 ≤ ∆|ΛF |2.

Now, we would like to to prove a similar inequality with |ΛF | in place of |ΛF |2.
The only difficulty is that the laplacian of |ΛF | may not be well defined where |ΛF |
vanishes. To get around this we set |ΛF |δ =

√

|ΛF |2 + δ for some small δ > 0. Then
as δ goes to zero we have we have |ΛF |δ → |ΛF | pointwise. Now all derivatives are
defined, allowing us to compute

∂t|ΛF |δ =
∂t|ΛF |

2

2|ΛF |δ
,

along with

∆|ΛF |δ =
∆|ΛF |2

2|ΛF |δ
−

|∇|ΛF |2|2

2(|ΛF |2 + δ)3/2
.

Applying equation (5.17):

(5.18) (∂t −∆)|ΛF |δ = −
(|∇ΛF |2 + |∇ΛF |2)

2|ΛF |δ
+

|∇|ΛF |2|2

2(|ΛF |2 + δ)3/2
.

The right hand side above is shown to be non-positive by the following:

|∇|ΛF |2|2 = |〈∇ΛF,ΛF 〉+ 〈ΛF,∇ΛF 〉|2 ≤ (|∇ΛF |2 + |∇ΛF |2)(|ΛF |2 + δ).

Thus we can integrate (5.18) and then send δ to zero to get:

∫

X̃

∂t|ΛF |ω
n
ǫ ≤ 0.

Now, if the L1 norm of ΛǫFǫ,t is finite we can pull the derivative out of the integral:

∂t

∫

X̃

|ΛF |ωn
ǫ ≤ 0.

Since for all ǫ the L1 norm decreases in time, all we need to do is show that the L1

bound for ΛǫFǫ,0 is independent of ǫ. To see this we note

ΛǫFǫ,0 = ∆ǫφǫI + ΛǫF̃ ,
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so
∫

X̃

|ΛǫFǫ,0|ω
n
ǫ ≤

∫

X̃

|∆ǫφǫ|ω
n
ǫ +

∫

X̃

|ΛǫF̃ |ω
n
ǫ

=

∫

X̃

|Tr(−ΛǫF̃ + µǫI)|ω
n
ǫ +

∫

X̃

|ΛǫF̃ |ω
n
ǫ

≤ 2

∫

X̃

|ΛǫF̃ |ω
n
ǫ + C.

Thus to complete the proof we need to show ||ΛǫF̃ ||L1 is bounded independent of ǫ.
Since ΛǫF̃ is smooth for ǫ > 0, if we can show the bound for ǫ = 0 (the degenerate
case) we will be done.

First we note that Tr(Λ0F̃ ) = π∗Tr(ΛF ) since Tr(F̃ ) ∧ ωn−1
0 = π∗Tr(F ) ∧ ωn−1

0 .
Then since π∗Tr(F ) is in L1 by Proposition 2, we have

(5.19)

∫

X̃

|Tr(Λ0F̃ )|ω
n
ǫ ≤ C.

Furthermore since J̃ is induced from a metric π∗H on π∗E, we have by (2.6)

Λ0F̃ = π∗(ΛFE |S) + Λ0(γ
† ∧ γ).

Now even though the endomorphism Λ0(γ
† ∧ γ) is unbounded, we do know it is

positive. Thus since π∗ΛFE|S is the pullback of a smooth endomorphism it follows
that the eigenvalues of Λ0F̃ are bounded from below. This fact, along with (5.19),
give the desired L1 bound for Λ0F̃ . Thus the L

1 norm of ΛǫF̃ is independent of ǫ.

With this uniform L1 bound, we can now get a L∞ estimate for ΛǫFǫ,t.

Proposition 7. For all t > 0, the following bound is independent of ǫ:

|ΛǫFǫ,t|L∞ ≤ C.

Proof. This bound cannot be extended to t = 0, since in this case we know that
Λ0F0,0 is not in L∞. However, for all times t > 0 we use a heat kernel estimate. We
have seen that this endomorphism evolves by a heat equation Λǫ∂tFǫ,t = ∆ǫΛǫFǫ,t,
thus using the heat kernal Φǫ,t we have

ΛǫFǫ,t =

∫

X̃

Φǫ,tΛǫFǫ,0 ω
n
ǫ .

Now Proposition 2 of [3] gives a L∞ estimate for the heat kernel independent of ǫ:

0 ≤ Φǫ,t ≤ C(t
−n + 1).

Using this estimate, for any t > 0 we have

|ΛǫFǫ,t|L∞ ≤

∫

X̃

|Φǫ,tΛǫFǫ,0|ω
n
ǫ

≤ C(t−n + 1)

∫

X̃

|ΛǫFǫ,0|ω
n
ǫ

≤ C(t−n + 1)
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since we have a uniform L1 bound. This proves the proposition.

Our next step is to prove a uniform bound in ǫ for Tr(hǫ,t). Once we get this
bound, standard theory for the Donaldson heat flow will give us control of F in Ck

for all k.

Proposition 8. Tr(hǫ,t) is bounded independent of ǫ for all time t with 0 < t1 ≤
t ≤ t2 <∞ .

Proof. Dropping subscripts we have that

∂tTr(h) = Tr(∂th) = −Tr(h(ΛF − µI)).

Since t ≥ t1 > 0, by the previous proposition |ΛF | ≤ C for some large positive
constant C. Then

∂tTr(h) ≤ C Tr(h).

Set Tr(h) = f . We have

∂tf − Cf ≤ 0,

multiplying both sides of the equation by e−Ct we get

e−Ct∂tf − Ce
−Ct f = ∂t(e

−Ctf) ≤ 0.

Integrating both sides gives

e−CtTr(hǫ,t) ≤ Tr(hǫ,0)e
C·0 = 1.

Thus

Tr(hǫ,t) ≤ e
Ct ≤ eCt2 ,

which is independent of ǫ.

The conformal change we made in defining Jǫ,0 guarantees that deth = 1 along
the flow. Since the trace of h is bounded from above it follows that all the eigenvalues
of h are bounded away from zero, and thus h−1 is in L∞. At this point standard
theory gives the desired Ck bounds of the curvature independent of ǫ. After going to
a subsequence ǫi, ǫi −→ 0 as i → ∞, the flows converge to a flow J0,t for t ∈ [t1, t2].
This flow is the degenerate flow (5.14) we hoped to define. It is not unique (it may
change if we take a different subsequence or if we choose a different time interval
[t′1, t

′
2]), however we can still prove long time existence.

Proposition 9 (Long time existence). Given J̃ at time t0, once we choose
positive times t1 and t2 to get a degenerate flow for t ∈ [t1, t2], we can extend the flow
for all time.

Proof. Recall that we choose subsequence of flows as ǫ→ 0 to define the degener-
ate flow. Now choose a sequence of times {tn} going to infinity. We extend the flow
to intervals, [t1, t3], ..., [t1, tn], ..., always taking subsequences of the defining sequence
from the previous step. Since the standard Donaldson heat flow exists for all time,
each flow Jǫ,t, ǫ > 0, exists for all time, and we can continue this process and get a
degenerate flow as tn goes to infinity.
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Now that we have the degenerate flow defined for one blowup, we briefly describe
the case of multiple blowups. Let π1, ...πk be the sequence of blowups given in the
regularization procedure for S. Assume that π1 is the first blowup in the procedure,
and thus it is on the singular set with highest codimension. On the final blowup, we
have the following Kähler form:

ω = ω0 + ǫkσk + ...+ ǫ1σ1.

If we define the Donaldson heat flow with respect to this Kähler form, then letting ǫ1
go to zero will correspond with the previous work in this section. Thus after going to
a subsequence we get a smooth flow for times t ∈ [t′1,∞), t′1 > t1, with respect to the
metric

ω = ω0 + ǫkσk + ...+ ǫ2σ2.

We now repeat this process, which is possible since the L1 bound from Proposition 6
is independent of all ǫi, including ǫ2. Thus we get the bounds we need to send ǫ2 to
zero, and along a subsequence get a smooth flow for t ∈ [t′2,∞), where t′2 > t′1. This
process continues and after a finite number of steps we have the desired degenerate
flow defined for t ∈ [t′k,∞). Choose t∗ ∈ [t′k,∞), then Theorem 4 is proved by choosing
the initial metric J0,t∗ .

Proposition 10. Let E be a semi-stable vector bundle of rank r over X, and let S
be a subsheaf of minimal rank among all sheaves with the property µ(S, ω) = µ(E,ω).
Then the Donaldson functional MS̃ on the regularized vector bundle S̃ over X̃ is
bounded from below.

Proof. We have previously shown the degenerate flow is defined for all time with
initial metric J0,t∗ . We now follow the proof of Simpson from [24] to show MS̃(t) is
bounded from below. Suppose we choose S as in Theorem 3, so that it has minimal
rank among all sheaves with the property µ(S) = µ(E). We actually work along
a subsequence of times, which we call ti. Denote hi := h0,ti for simplicity, and let
si =log(hi). We now use a different form of MS̃ , introduced by Donaldson in [8].
Here, by explicit computation along a specific path, one sees that the functional is
given by:

MS̃(ti) =

∫

X̃

Tr(F0 si)ω
n−1
0 +

∫

X̃

∑

αγ

|∂̄sγi α|
2 e

λγ−λα − (λγ − λα)− 1

(λγ − λα)2
ωn
0 ,

where λα are the eigenvalues of si. Now, because ω is degenerate along the exceptional
divisor, we consider the pushforward sheaf π∗S̃. Recall π is an isomorphism off Z, thus
π∗S̃ is a vector bundle on X\Z. Since the set π−1Z has measure zero the Donaldson
functional can now be expressed as:

MS̃(ti) =

∫

X\Z

Tr(F0 si)ω
n−1 +

∫

X\Z

∑

αγ

|∂̄sγi α|
2 e

λγ−λα − (λγ − λα)− 1

(λγ − λα)2
ωn.

Now we can apply the argument of Simpson. His argument works in this case because
the non-compact manifold X\Z satisfies all the assumptions Simpson imposes on
the base. Also the key assumption on the bundle, that ΛF0 is in L∞, is satisfied by
Proposition 7 and the fact that π is an isomorphsim off Z. We assume by contradiction
that there do not exit large constants C1, C2 so that the following estimate holds:

(5.20) ||si||L1 ≤ C1 + C2MS̃(ti).
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Then using the blowup argument of Simpson we can construct a proper torsion free
subsheaf F of π∗S̃, such that µ(F , ω) ≥ µ(π∗S̃, ω) and rk(F) < rk(S̃). Denote
rk(F) = p. Of course, we assumed that S was stable, not π∗S̃, so we do not arrive at
a contradiction just yet. However, because S̃ is a subbundle of π∗E, we have π∗S̃ and
thus F is a subsheaf of E off Z. Once again because Z has codimension two we can
view F as locally a rational map into the GrassmanianGr(p, r) and complete this map
over Z. So F is a subsheaf of E, and since E is semi-stable we know µ(F) = µ(E).
However F has rank strictly less than S̃ and thus S, contradicting our choice of S as
the subsheaf of E with the same slope and minimal rank.

With this contradiction inequality (5.20) follows, and we can conclude:

MS̃(J̃0, J̃ , π
∗ω) ≥ −

C1

C2
.

By definition MS(H0, H) is bounded from below as well.

As a final step, we need alter the previous proposition so it can be applied to the
induction step in the proof of Theorem 3.

Proposition 11. Let E be a semi-stable vector bundle of rank r over X̃,
where X̃ is given by a blowup π : X̃ −→ X. Let S be a subsheaf of minimal rank
among all sheaves with the property µ(S, π∗ω) = µ(E, π∗ω). Then the functional
MS(H0, H, π

∗ω) is bounded from below.

Proof. First we construct the regularization S̃ on the blowup π1 : X̃1 −→ X̃ . As
before, we have the degenerate flow defined for all time for some initial metric J0,t∗

on S̃. Assume that along a subsequence of times estimate (5.20) does not hold. We
view the sheaf π∗π1∗S̃ as a vector bundle on X\Z, and just as in the proof of the
previous proposition we use the argument of Simpson from [24] to construct a proper
torsion free subsheaf F of π∗π1∗S̃ such that µ(F , ω) ≥ µ(π∗π1∗S̃, ω). From this fact
we derive our contradiction.

Since S̃ is a holomorphic subbundle of π∗
1E, it follows that on X\Z, F is a

subsheaf of π∗E. Thus we get a map F −→ π∗E defined on all of X given by the
composition of restriction to X\Z followed by inclusion. It follows that the natural
map π∗π∗E −→ E gives us a map:

j : π∗F −→ π∗π∗E −→ E.

Of course this map may not be injective, however if we quotient out by the kernel of
j, we can construct a proper subsheaf of E:

0 −→ π∗F/Ker(j) −→ E.

Because π is an isomorphsim off Z, we see j is injective off π−1(Z), so Ker(j) is a
torsion sheaf supported on π−1(Z). We will arrive at a contradiction if we can show
µ(π∗F/Ker(j), π∗ω) = µ(E, π∗ω), since rk(π∗F/Ker(j)) < rk(S) and S was chosen
to be minimal. Consider the short exact sequence:

(5.21) 0 −→ Ker(j) −→ π∗F −→ π∗F/Ker(j) −→ 0.

Ker(j) is a torsion sheaf, so by Proposition 6.14 from [15], the determinant line bundle
detKer(j) admits a non-trivial holomorphic section ζ, which can only vanish along
the support of Ker(j). Let V be the vanishing locus of ζ. It follows that:

deg(Ker(j), π∗ω) =

∫

V

π∗ωn−1 = 0,
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and the integral on the right is equal to zero since π∗ω is degenerate along the excep-
tional divisor (which contains V ). Thus by (5.21) we have deg(π∗F/Ker(j), π∗ω) =
deg(π∗F , π∗ω), and since both sheaves have the same rank it follows that:

µ(π∗F/Ker(j), π∗ω) = µ(π∗F , π∗ω) ≥ µ(S̃, π∗
1π

∗ω) = µ(S, π∗ω) = µ(E, π∗ω).

E is semi-stable with respect to π∗ω, so µ(π∗F/Ker(j), π∗ω) = µ(E, π∗ω), and we
have our contradiction. We can now conclude:

MS̃(J̃0, J̃ , π
∗
1π

∗ω) ≥ −
C1

C2
.

By definition MS(H0, H, π
∗ω) is bounded from below as well.

6. The main theorem and applications. We begin this section by defining
an approximate Hermitian-Einstein structure on a holomorphic vector bundle E.

Definition 6. We say E admits an approximate Hermitian-Einstein structure if
for all ǫ > 0, there exists a metric H on E with curvature F such that:

sup
X
|ΛF −

µ(E)

V ol(X)
I|C0 < ǫ.

With this definition, we now prove Theorem 2 as stated in the introduction.

Proof. This theorem is proven in [15] in the case where X is a projective algebraic
manifold. The only part of that proof which does not extend to the Kähler case is
the proof that condition i) implies condition ii). This is exactly what we prove for X
Kähler in sections 4 and 5. For a proof that condition ii) implies condition iii) and
that condition iii) implies condition i) we direct the reader to [15].

We now state the following applications. In each application X is always assumed
to be Kähler. The proofs of the first four Corollaries can be found in [15], chapter IV
section 5, under the assumption that E admits an approximate Hermitian-Einstein
structure. We use Theorem 2 to identify existence of an approximate Hermitian-
Einstein structure with E semi-stable. We note that Corollaries 2-4 are not original
results, however Theorem 2 provides a natural proof of these statements. For example
Corollary 2 is also proven in [1].

Corollary 1. If E is semi-stable, so is the symmetric tensor product SpE, and
the exterior product ΛpE.

Corollary 2. If E1and E2 are semi-stable vector bundles, so is E1 ⊗ E2.

Corollary 3. Let X̂ be a finite unramified covering of X with projection p :
X̂ −→ X. If E is a semi-stable vector bundle over X, then p∗E is a semi-stable
vector bundle over X̂. Also if Ê is a semi-stable vector bundle over X̂, then p∗Ê is a
semi-stable vector bundle over E.

Corollary 4. Let E be a semi-stable vector bundle of rank r over X. Then

∫

X

((r − 1)c1(E)2 − 2r c2(E)) ∧ ωn−2 ≤ 0.
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In [10], Donaldson recalls a result of Atiyah and Bott from [2] on the Yang-Mills
functional and discusses an analogous result for the Calabi functional. We restate this
result of Atiyah and Bott here. Let E be a vector bundle over a curve Σ and consider
a flag F of subbundles:

0 = E0 ⊂ E1 ⊂ · · · ⊂ Eq = E.

Define F to be slope decreasing if µ(E1) > µ(E2) > ... > µ(E). Let Qi = Ei/Ei−1,
and define

Φ(F)2 =

q
∑

i=0

µ(Qi)
2rk(Qi).

Then Atiyah and Bott prove that for all F slope drecreasing:

inf
A
||F (A)||2L2 = sup

F
Φ(F)2.

In fact, the supremum is attained if F is the Harder-Narasimhan filtration of E. Now
consider X compact Kähler of any dimension and normalize ω to have volume one.
From Theorem 2 we can see directly that:

Corollary 5. If E is a semi-stable vector bundle over X, then

(6.22) inf
A
||ΛF (A)||2L2 = sup

F
Φ(F)2.

The right hand side is given explicitly by µ(E)2rk(E) since the Harder-
Narasimhan filtration of E is just E. The left hand side can be computed using
an approximate Hermitian-Einstein structure. Here on the left we use the Hermitian-
Yang-Mills functional, which is equivalent to the Yang-Mills functional up to topo-
logical terms. It would be interesting to know if formula (6.22) holds for unstable
bundles.
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