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A GEOMETRIC PROBLEM IN FUNCTION THEORY

HENRY HELSON AND FARHAD ZABIHI

Abstract. The Riemann Mapping Theorem asserts that there is an an-
alytic function in the unit disk taking its boundary values on any given
simple smooth curve in the plane. A theorem of Szegö says that an an-
alytic function in the disk can have boundary values lying on prescribed
circles about the origin. We shall prove that the circles of Szegö’s the-
orem can be replaced by other curves, giving a common generalization
of these theorems.

1. Introduction

For each t, 0 ≤ t < 2π, let Γt be a curve in the complex plane. Is there
a function f , analytic in the unit disk and belonging to some appropriate
function class, whose boundary function has the property that f(eit) lies on
Γt for a.e. t?

If Γt is the same simple closed and sufficiently smooth curve Γ for each
t, then the Riemann Mapping Theorem gives an answer, as well as other
information. If Γt is a circle about the origin of radius w(eit), a well-known
theorem of G. Szegö says that such a function exists in the Hardy space H1,
provided that w and log w are summable functions.

If we replace the circles even by ellipses, there is no obvious result; our
problem is to find whether something more general is true. This paper presents
two methods to approach the question and establishes positive results for
various kinds of curves. Section 2 treats lines, Section 3 hyperbolas and
ellipses, Section 4 regions that are convex but fairly general, and Section 5
mentions some further results that are not proved.

Suppose the family (Γt) is defined by a functional relation

(1.1) F (x, y, eit) = 0.
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Our problem is to find a function f in some Hardy class whose real and
imaginary parts g and g̃ satisfy

(1.2) F (g, g̃, eit) = 0.

Here g̃ is the trigonometric conjugate function of g (which is defined to have
mean value 0, or to make f(0) real). Since the conjugate function is given in
terms of g by a singular integral, in principle (1.2) is an integral equation. The
results below provide solutions for some classes of such integral equations.

We assume that the reader is familiar with the Riemann mapping theorem
and Szegö’s theorem, and with the elementary facts about conjugate functions
and analytic functions in the unit disk.

2. Lines

There is an easy case of the problem. Let each Γt be a vertical line with
abscissa w(eit). If w is summable, then its conjugate function w̃ exists, belongs
to Lp for each p < 1, and w + iw̃ is the required function f . Then f belongs
to Hp for each p < 1, and if w belongs to a better Lebesgue class, so does f .
Obviously the statement can be made as well for horizontal lines.

Now let Γt be a line in the plane for each t. We parametrize Γt: its
points are q(u) = zt + ueiα(eit), where for each t, zt is the point on the line
closest to the origin, α(eit) a real number of modulus at most π/2 determined
by the slope of the line, and u a real parameter. We assume that zt depends
measurably on t (so α(eit) does too). As q traverses Γt, exp(−iα(eit)+α̃(eit))q
describes a horizontal line Vt. If g is a function on the circle taking its values
on Vt, then f = g exp(iα(eit) − α̃(eit)) takes its values on Γt. This line of
reasoning will lead to the conclusion that f belongs to Hp for each p < 1

2 if
zt is summable. Better conclusions follow if we assume that |α| is bounded
away from π/2 and |zt| is smaller. But this method will not reach the right
result, which should be rotationally invariant, and which we conjecture to be:

Let a family of lines Γt be given by equations ax + by = c where a, b, c
are real measurable functions of eit, a2 + b2 = 1, c ≥ 0. Suppose that c is
summable. Then there is a function f in H1 taking its values in the family of
lines a.e.

Sometimes we can treat half-lines. If Γt is the ray from the origin with
argument θ(eit) (|θ(t)| < π), then f = exp(iθ − θ̃) is the required function.
But if Γt is a vertical half-line based on the real axis with abscissa w(eit),
the function conjugate to w is not usually bounded unless w is sufficiently
smooth. If it is, we can add a constant to the conjugate function to make it
positive; but if w̃ is unbounded negatively, there is no solution.
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3. Hyperbolas and ellipses

For some families of curves, fixed point methods provide a solution to our
problem. Suppose that the family (Γt) is defined by (1.1) and that we can
solve (1.2) for g: g = G(g̃, eit). Define the transformation

(3.1) S(g) = G(g̃, eit).

Then a fixed point for S is a solution. If S is a strict contraction in a complete
metric space, then Banach’s fixed-point theorem shows that there is such a
function. We show now how this is the case for a class of hyperbolas.

Fix a positive constant a. For each c, (<z)2 − a(=z)2 = c2 describes a
hyperbola in the complex plane. Write c2 = w(eit) and let Γt be the right
branch of the corresponding hyperbola. We suppose that w belongs to L1.

Define a map S of L2 (here the space of real square-summable functions
on the circle) into itself: S(g) = (ag̃2 + w)

1
2 . We assert that if a < 1, then S

is a strict contraction: for all g, h in the space

(3.2) ‖S(g)− S(h)‖2 ≤ a‖g − h‖2.

Taking this for granted, S has a unique fixed point g, and f = g + ig̃ belongs
to the Hardy space H2. Therefore

(3.3) (<f)2 = g2 = S(g)2 = ag̃2 + w = a(=f)2 + w

and f is a solution under these hypotheses. Note that f(0) = g(0) is real, a
small bonus.

We show that S is a contraction. For any positive numbers r, s, u with
r > s we have

(3.4) (r + u)
1
2 − (s + u)

1
2 < r

1
2 − s

1
2 .

Using this fact, for g, h in L2 we have

‖Sg − Sh‖2 =
∫ (

(ag̃2 + w)
1
2 − (ah̃2 + w)

1
2

)2

dσ(3.5)

< a

∫
(|g̃|−|h̃|)2dσ

= a

∫
g̃2 + h̃2 − 2|g̃h̃|dσ

≤ a

∫
|g̃ − h̃|2dσ.

(σ is normalized Lebesgue measure on the circle.)
If g and h have mean value 0, the right side equals a‖g− h‖2 (because the

Fourier coefficients of a function and its conjugate have the same modulus,
except for the mean value), and (3.2) is proved. But adding a constant to
g − h can only increase its norm, so the proof is finished.
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The restriction on a is due to a defect in the method, and doubtless the
result holds for all a.

If a is a positive constant and w a positive function,

(3.6) a(<z)2 + (=z)2 = w

describes a family of ellipses like the hyperbolas above. For a = 1 this is
Szegö’s problem and there is a solution f provided that w and log w are both
summable. Here, if f solves the problem for a particular a and w, then if
solves the problem for 1/a and w/a, so there is a duality between values of a
that are smaller than 1 and those that are larger.

For values of a close to 1, and w bounded and bounded from 0, the fixed
point method can be applied not in L2, but in the space of bounded functions
g that satisfy ag2 ≤ w. The details are laborious and the result not very
strong; a better one will be proved in the next section. So we pass on.

4. Convex regions

We come to more serious things.
Say that a family of curves (Γt) is measurable if the set of all pairs (z, eit)

such that z belongs to Γt is a Borel set in C × T (C is the complex plane, T
the unit circle).

Let (Γt) be a measurable family of simple closed curves in the complex
plane, and let Gt be the simply connected region bounded by Γt, each con-
taining the origin. For each t, denote by W (eit) the greatest distance from the
origin to a point of Γt, and by w(eit) the least such distance. These functions
are measurable.

Theorem. Suppose that each region Gt is convex and that W and log w
are summable functions. Then there is a function f in H1 such that f(eit)
belongs to Γt for a.e. t.

The proof of the theorem follows the idea of a proof of the Riemann map-
ping theorem, but with complications.

Let A be the set of functions g in H1 such that

g(eit) is in Gt or Γt for a.e. t

and
g(0) = 0, g′(0) ≥ 0.

We verify thatA is not empty. Since w is a summable positive function with
summable logarithm, there is an outer function h in H1 such that |h(eit)| =
w(eit) a.e. and h(0) > 0. Now Gt contains every complex number of modulus
less than w(eit); hence its closure contains eith(eit). The derivative of (zh(z))
is h(0) > 0, so this function belongs to A.

The functions of A are bounded in the norm of H1, because |g| ≤ w a.e.
Therefore the numbers g′(0) are bounded above for g in A. Choose a sequence
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(gn) for which these derivatives tend to their upper bound. A subsequence
(which we call (gn) again) converges uniformly on compact subsets of the open
disk to a limit function h, which vanishes at 0 and whose derivative at 0 is
the upper bound of derivatives of functions in A at 0. We shall show that h
belongs to A.

H1 is a dual Banach space, and it is easy to see that (gn) is convergent in
the weak star-topology to an element of H1, whose coefficients match those
of h. Thus h belongs to H1 and is the limit of (gn) in two senses. We shall
show that A is closed in the star-topology, so that h is in A.

First, A is norm-closed in H1. For if g is a norm limit of a sequence
(gn) from A, a subsequence converges pointwise a.e. to g, and the properties
required for membership in A are preserved.

Now A is convex because the regions Gt are convex. A closed convex
bounded set in the dual of a Banach space is star-closed, according to the
Banach-Alaoglu theorem. This proves that A is star-closed.

We remark that this has been the most important use of the hypothesis of
convexity of the regions Gt, and a weaker hypothesis would suffice if it implies
that A is star-closed.

The difficult point of the proof is to show that the values of h lie on the
curves Γt, because it is not obvious whether they lie in Gt or on its boundary.

Let F be the subset of T where h(eit) belongs to Gt rather than to Γt.
We want to show that F has measure 0. First we show that it is measurable.
Since h belongs to H1, we can take it to be a Borel function. Let k be the
mapping from T into C × T that carries eit to (h(eit), eit). It is easy to see
that the inverse image under k of a product set is a Borel set in T , and from
this fact, that k is a Borel function.

The set of (z, eit) such that z belongs to Γt is a Borel set in the product
space, by hypothesis. Its inverse image under k is thus a Borel set in T . This
is the set where h(eit) belongs to Γt, the complement of F , which is therefore
measurable.

Lemma. Suppose that F has positive measure. Then there is a subset E
of F with positive measure and a positive ε such that λh(eit) is in Gt for all
eit in E and λ such that |λ− 1| < ε.

Proof. For each eit in F there is a positive ε such that λh(eit) is in Gt for
all λ such that |λ− 1| < ε. Therefore there is a positive ε and a smaller set E
of positive measure on which this is the case for all eit at once, as was to be
shown. �

We now prove that the extremal function h solves the problem. Assum-
ing that F has positive measure, we shall construct a function in A whose
derivative at 0 exceeds that of h, and this will prove that F has measure 0.
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The mapping functions familiar from proofs of the Riemann Mapping The-
orem will not serve now. We need a function q with the following properties:

q is an analytic mapping from the vertical strip (0 < <z < 1) to the disk
about the point 1 with radius ε (the number found above) such that the left
boundary of the strip is mapped to the real interval (1− ε, 1), and (0, 1) into
(1, 1 + ε).

We find such a function in steps. First, tan z is a Riemann map from the
strip (−π/4 < <z < π/4) onto the unit disk. It maps the left half of the strip
to the left half of the disk, the right half to the right half, and the imaginary
axis to the vertical segment (−i, i). The interval (0, π/4) is mapped to (0, 1).

Restrict the tangent to the right half of the strip, mapping it to the right
hemisphere of the unit disk. Then tan2 z maps this smaller strip onto the unit
disk, but the boundary on the left (the vertical coordinate axis) is carried to
(−1, 0) inside the disk, and the boundary on the right to the whole circle.
Now q(z) = 1 + ε tan2 πz/4 is the function we want.

Let e be the indicator function of the set E (of the lemma above). Form
the analytic function k = e + iẽ, where ẽ is the function conjugate to e. Then
k(z) lies in the strip (0 < <z < 1) for all z in the open unit disk; k(eit) lies
on the right boundary of the strip when eit is in E, and on the left boundary
when eit belongs to the complementary subset of the circle.

q ◦ k(z) maps the unit disk into the disk of radius ε about the point 1.
For z = eit in the complement of E, q ◦ k(z) takes values in (1 − ε, 1); for
points in E, its values lie on the boundary of the little disk. And, importantly,
q ◦k(0) = q(c) where c, the mean value of k, satisfies 0 < c < 1, so that q(c) =
1 + tan2 πc/4 > 1.

The product f = h(q ◦ k) is analytic and bounded in the unit disk. Its
boundary values on E are those of h (which lie in Gt and not close to the
boundary) multiplied by a number in a small neighborhood of 1, so the prod-
uct remains in Gt. In the complement of E, where h(eit) lies in Γt or Gt,
q ◦ k(eit) is in the interval (1 − ε, 1), and the convexity of Gt ensures that
the product is in Gt or on its boundary. f(0) = 0 because h(0) = 0. For its
derivative we have

(4.1) f ′(0) = h′(0)(q ◦ k(0)) + h(0)((q ◦ k)′(0)).

The second term is 0; and the first term is positive (now we know that f
belongs to A), and indeed greater than h′(0), which was supposedly the max-
imum over A, because q ◦ k(0) > 1. This contradiction proves the theorem.

The theorem gives a better result about ellipses than the fixed point method
could give. Let the family have equations

(4.2) ax2 + by2 = c2

where a, b, c are positive Borel functions with a2 + b2 = 1. The function w
of the theorem is the smaller of c/a

1
2 , c/b

1
2 ; and W is the larger of these
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quantities. (Which one is larger may not be the same at different points, of
course.) We assume that W and log w are summable; it comes to the same to
say that c/a

1
2 , c/b

1
2 are summable, together with their logarithms. We check

that the family is measurable in the sense above; then the theorem applies.
Identify the complex plane with R2, and let F (x, y, eit) = ax2 + by2 − c2.

The family of ellipses is the null set of F in R2×T . That is, the family is the
inverse image of (0) under the Borel function F , and consequently is a Borel
set in the product space as we wished to show.

We can also treat some families of hyperbolas; in this case each Gt is
unbounded, W is infinite, and the theorem does not apply directly. Let Γt be
the right-hand branch of the hyperbola

(4.3) x2 − ay2 = c2,

where a and c are positive measurable functions on T , and Gt the region to
the right of Γt, where the left side of (4.3) is greater than the right. The point
(1, 0) belongs to Gt if and only if c < 1; we assume this is the case. But we also
want w(eit), the distance from (1, 0) to Γt, to have summable logarithm. This
distance is 1−c2 if the asymptotes to the hyperbola are steep; otherwise there
is a closer point whose squared distance is (a + 1)−1 − c2/a. This quantity
must be positive (a new condition) and its logarithm must be summable.

Now apply the map (z − 1)/(z + 1); each curve Γt is carried to a closed
curve Γ′t lying in the closed unit disk. The new curve bounds a region G′

t that
contains the origin and is convex. To establish convexity, observe that Gt is
the intersection of the halfplanes bounded by lines tangent to Γt. These lines
are carried by the mapping to circles, and inspection of the possibilities shows
that the image of Gt is inside these circles (rather than outside them). Their
interiors have intersection G′

t, and the intersection of circular disks is convex.
The other hypotheses of the theorem are satisfied, so there is a function g

belonging to H∞ taking its values on the family (Γ′t). The inverse conformal
map carries g to f taking its values on the hyperbolas. We cannot specify a
function class to which f belongs without more information. The asymptotes
of Gt have slope ±1/a

1
2 . If this function is bounded, all the hyperbolas lie in

a sector of the plane with opening less than π, and f(z) lies within this sector
for |z| < 1. Such a function belongs to Hp for a value of p greater than 1,
depending on the opening of the sector.

Note that this theorem allows a more general coefficient a than the result
about hyperbolas obtained by the fixed point method, but needs a condition
of boundedness on c that was not required before. Probably there is a result
that includes both.

It is clear that the origin, in the enunciation of the theorem, could be
replaced by any other point. It would be interesting to find a result in which
this exceptional point can be allowed to depend on t.
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5. Extensions of the theorem

There are two directions in which the main theorem can be strengthened:
the convexity condition can be relaxed, and some result about uniqueness
proved (as for both the Riemann mapping theorem and Szegö’s theorem).

Convexity was needed to show that A was closed in a weak-star topology.
With a good deal of complication, and assuming that all the Γt lie inside one
circle, convexity can be replaced by this condition: each Γt is starlike with
respect to each point of a disk centered at the origin. If moreover the disks all
have the same diameter, then the function f in H∞ of the conclusion is unique
when normalized to have the form eitg(eit), where g is outer and g(0) > 0.
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