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AN ELEMENTARY GIT CONSTRUCTION OF THE MODULI
SPACE OF STABLE MAPS

ADAM E. PARKER

Abstract. This paper provides an elementary construction of the mod-
uli space of stable maps M0,0(Pr, d) as a sequence of “weighted blow-ups
along regular embeddings” of a projective variety. This is a corollary
to a more general GIT construction of M0,n(Pr, d) that places stable

maps, the Fulton-MacPherson space P1[n], and curves M0,n into a single
context.

0. Introduction

Given a projective space Pr and a class d ∈ A1(Pr) ∼= Z, an n-pointed,
stable map of degree d consists of the data {µ : C → Pr, {pi}ni=1}, where:

• C is a complex, projective, connected, reduced, n-pointed, genus 0
curve with at worst nodal singularities.
• {pi} are smooth points of C.
• µ : C → Pr is a morphism.
• µ∗[C] = dl, where l is a line generator of A1(Pr).
• If µ collapses a component E of C to a point, then E must contain at

least three special points (nodes or marked points).

We say that two stable maps are isomorphic if there is an isomorphism
of the pointed domain curves f : C → C ′ that commutes with the mor-
phisms to Pr. Then there is a projective coarse moduli space M0,n(Pr, d) that
parametrizes stable maps up to isomorphism [3]. The open locus M0,n(Pr, d)
corresponds to maps with a smooth domain while the boundary is natu-
rally broken into divisors D(N1, N2, d1, d2), where N1 ∪ N2 is a partition of
{1, 2, . . . , n} and d1 + d2 = d. This corresponds to maps where the domain
curve has two components, one of degree d1 with the points of N1 on it.

Similarly, we can define stable maps to Pr × P1 of bi-degree (d, 1), and
look at the corresponding coarse moduli space M0,n(Pr × P1, (d, 1)). The
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boundary again is broken into divisors. When no confusion is possible, we
write D(N1, N2, d1, d2) in place of D(N1, N2, (d1, 1), (d2, 0)).

In [14], Pandharipande constructs the open M0,0(Pr, d) ⊂ M0,0(Pr, d) as
the GIT quotient of the open basepoint free locus U(1, r, d) ⊂ ⊕r

0H
0(P1,O(d)).

We have a similar construction for the open pointed locus M0,n(Pr×P1, (d, 1))
⊂ M0,n(Pr × P1, (d, 1)). Our main result is the following theorem, which
gives a construction of the compact M0,n(Pr, d) as a geometric quotient of
M0,n(Pr × P1, (d, 1)) by G = SL2(C).

Theorem 0.1. Let E be an effective divisor such that −E is φ-ample.
Take a linearized line bundle L ∈ PicG((P1)n × Pr

d) such that

((P1)n × Pr
d)

ss(L) = ((P1)n × Pr
d)

s(L) 6= ∅.
Then for each sufficiently small ε > 0, the line bundle L′ = φ∗(L)(−εE) is
ample and

(M0,n(Pr × P1, (d, 1)))ss(L′) = (M0,n(Pr × P1, (d, 1)))s(L′)
= φ−1{((P1)n × Pr

d)
ss(L)}.

There is a canonical identification

(M0,n(Pr × P1, (d, 1)))s(L′)/G = M0,n(Pr, d)

and a commutative diagram

(M0,n(Pr × P1, (d, 1)))s(L′) f−−−−→ M0,n(Pr, d)

φ

y φ̄

y
((P1)n × Pr

d)
s(L) −−−−→ ((P1)n × Pr

d)
s(L)/G

where Pr
d := P((H0(P1,O(d))r+1) and φ : M0,n(Pr × P1, (d, 1))→ (P1)n × Pr

d

is the Givental contraction map [4].

The eventual goal would be to construct M0,0(Pr, d) as sequence of blow-
ups of some projective variety. One benefit of such a construction is the
ability to compute the Chow ring of M0,0(Pr, d), as Keel’s Theorem 1 from
the appendix of [9] gives the Chow ring of a blow-up. This cannot happen.
First, M0,0(Pr, d) is not smooth. It has singularities at points corresponding
to maps with nontrivial automorphisms. However, M0,0(Pr, d) is actually
smooth when considered as a stack, and so at best we may hope for a stack
analogue of a sequence of blow-ups mentioned above. The second issue seems
more serious. There are no known maps from M0,0(Pr, d) to anything nice,
and a birational map from M0,0(Pr, d) is exactly what is needed to carry out
the above project.

As corollaries to our GIT construction, we are able to construct a birational
map φ̄ from M0,0(Pr, d). Recently, progress has been made on understanding
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M0,0(Pr × P1, (d, 1)). For example, in [13], the above φ is factored into a
sequence of intermediate moduli spaces such that the map between two suc-
cessive spaces is a “weighted blow-up of a regular local embedding”. As a
corollary of the above theorem, we take the quotient of these intermediate
spaces and factor φ̄.

In Section 1, we collect some preliminary results and definitions that will be
used throughout the paper. Section 2 identifies the stable locus in (P1)n×Pr

d

and explains how to pull it back to M0,n(Pr × P1, (d, 1)). In Section 3, we
prove the above theorem. Finally, in Section 4 we explain the factorization of
ϕ from [13] and construct the intermediate spaces the induced quotient map.
All work is done over C.

This paper is part of my thesis written at the University of Texas at Austin
under the direction of Prof. Sean Keel. I wish to extend my sincere gratitude
for all of his encouragement, guidance, and patience.

1. Preliminaries

Suppose that we want to compactify the space of n-pointed degree-d mor-
phisms from P1 → Pr. Perhaps after the above discussion, one would expect
that M0,n(Pr, d) correctly compactifies these objects. However, since we quo-
tient out by isomorphisms, we only get degree d un-parametrized pointed
morphisms to Pr. Here we discuss two spaces that do correctly answer this
question.

1.1. Linear sigma model. On one hand, an n-pointed, degree-d mor-
phism f is given by (r+1) homogeneous degree d polynomials in two variables,
along with a choice of n distinct points on the domain P1. In the notation of
[14], these maps correspond to the basepoint free locus

((P1)n \∆)× P(U(1, r, d)) ⊂ (P1)n × P(
r⊕
0

H0(P1,OP1(d)))

:= (P1)n × Pr
d.

Once we pick coordinates on P1, we can consider a closed point on the
basepoint free locus as

[x1 : y1]× · · · × [xn : yn]× [f0(x, y) : f1(x, y) : · · · : fr(x, y)],

where [xs : ys] 6= [xt : yt], the fj do not have any common roots, and scaling
does not change the map. The coefficients of these fj determine a point in
the projective space Pr

d := P(r+1)(d+1)−1. We will sometimes write aj
i for

the coefficient xd−iyi on fj (after choosing the obvious coordinates on Pr
d.)

We thus have a simple compactification by allowing the r + 1 forms to have
common roots, and allowing the n points to come together. This space is
sometimes referred to as the linear sigma model.
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Moreover, there is a G = SL2(C) action on this space, similar to the action
examined in [12] on binary quantics. On closed points, the action is given by

G× ((P1)n × Pr
d)→ (P1)n × Pr

d

g · [[x1 : y1]× · · · × [xn : yn]× f0(x : y), . . . , fr(x : y)]

= [g[x1 : y1]× · · · × g[xn : yn]× f0 ◦ g−1(x : y), · · · : fr ◦ g−1(x : y)],

where g and g−1 act on [x : y] by matrix multiplication.

1.2. The graph space. There is another, less simple (non-linear) com-
pactification of ((P1)n \ ∆) × P(U(1, r, d)). It is clear that this set equals
M0,n(Pr × P1, (d, 1)), and thus M0,n(Pr × P1, (d, 1)) provides another com-
pactification.

We will refer to the domain curve C for a map in M0,n(Pr × P1, (d, 1))
as a comb. There is an obvious distinguished component C0 on which µ|C0

will be of degree (d′, 1). We will call this component the handle. The other
components fit into teeth Ti, which are (perhaps reducible) genus-0, ni-pointed
curves meeting C0 at unique points qi. There is always a representative of the
map so that the degree 1 part of µ restricted to the handle is the identity.

The action on M0,n(Pr × P1, (d, 1)) is induced by the action on the image
P1. Namely we have

G×M0,n(Pr × P1, (d, 1))→M0,n(Pr × P1, (d, 1))

g · [µ1 × µ2 : C → Pr × P1]→ [µ1 × g ◦ µ2 : C → Pr × P1]

1.3. The Givental map. In [4] Givental constructed a projective mor-
phism that relates the graph space and the linear sigma model:

Theorem 1.1 ([4]). There is a projective morphism

ϕ : M0,0(Pr × P1, (d, 1))→ Pr
d.

Set-theoretically, consider a point in M0,0(Pr × P1, (d, 1)). As mentioned
above, there is a representative

[µ : C → Pr × P1 of bi-degree (d, 1)]

and a component C0 ⊂ C such that µ|C0 is the graph of r + 1 degree d′

polynomials (f0, . . . , fr) with no common zero. On the teeth T1, . . . , Ts, µ has
degree (di, 0), respectively, and d1 + · · · + ds = d − d′. Thus µ sends Ti into
Pr× zi ⊂ Pr×P1. Let h be a degree d− d′ form that vanishes at each zi with
multiplicity di. Then

ϕ(µ) = [f0 · h, f1 · h, . . . , fr · h] ∈ Pr
d,

where we read off the coefficients to obtain the point in projective space.
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Definition 1.2. Define the projective morphism φ to be the product of
ϕ with the n morphisms π2 ◦ evi : M0,n(Pr, d)→ Pr × P1 → P1, where evi is
evaluation at the nth marked point. This product gives us a morphism from
the graph space with marked points:

φ : M0,n(Pr × P1, (d, 1))→ (P1)n × Pr
d

On the open locus, M0,n(Pr × P1, (d, 1)), φ gives the isomorphism with
((P1)n \∆)× P(U(1, r, d)) mentioned above.

The following lemma is needed when we take the quotients.

Lemma 1.3. The above map

φ : M0,n(Pr × P1, (d, 1))→ (P1)n × Pr
d

is equivariant with respect to the above G actions.

Proof. We show that both the evaluation morphisms evi and the Givental
ϕ map are equivariant. Then their product is equivariant as well.

Take a point in M0,n(Pr × P1, (d, 1)). Choose a representative (µ : C →
Pr × P1, {pi}). Write C = C0 ∪ Ti as a comb, such that Ti ∩ C0 = qi. Also
write µi = π1 ◦ µ|Ti .

If we look at the image of the above map under ϕ, we see that ϕ(µ) will
be the product of r+1 forms (f0, . . . , fr) of degree d′ representing the handle
and a form h of degree d− d′ that vanishes at the qi with the correct degrees.
We see that g · ϕ(µ) will be the product of (f0 · g−1, . . . , fr · g−1), which are
r+ 1 forms of degree d′ with no common zero, with a form h′ of degree d− d′
that vanishes at g(qi) with the same degree that h vanished at qi.

We now need to calculate ϕ(g · µ). With the above notation, we see that
g ·(µ : C → Pr×P1) sends p ∈ Ti to (µi(p), g(qi)), and p ∈ C0 to (µ0(p), g(p)).
We find a representative of this new map for which the degree 1 part is the
identity.

Take the curve C ′ = g(C0)∪ Ti, where now the teeth Ti are glued to C0 at
g(qi). Define the map from C ′ → Pr × P1 as (µ0 ◦ g−1, id) on g(C0), and as
µi on the other teeth. The corresponding map is isomorphic to g · µ.

We look at the image under the Givental map. The image will be the r+1
degree d′ forms µ0 ◦ g−1, along with a form h that vanishes at g(qi) with the
correct degree. This is the same as g ·ϕ(µ). This shows that ϕ is equivariant.

That the evaluation morphisms are equivariant is immediate. �

1.4. The forgetful morphism. The second map that we will be inter-
ested in is the “forgetful” morphism

f : M0,n(Pr × P1, (d, 1))→M0,n(Pr, d)

defined by forgetting the map to P1 and collapsing any components that
become unstable. Moreover, since the G action on M0,n(Pr, d) is trivial, we
automatically have that f is G equivariant.
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2. Calculations on (P1)n × Pr
d

Immediately, one would expect thatM0,n(Pr, d) is the quotient ofM0,n(Pr×
P1, (d, 1)) by G as G “takes into account” the map to P1. The question is:
“How do we take the quotient?” We will use Geometric Invariant Theory
(GIT) in order to find an open set in M0,n(Pr × P1, (d, 1)) such that the
quotient is M0,n(Pr, d).

All background concerning GIT will be taken from [2] and [12], though we
recall the main theorem in its generality here for reference.

Theorem 2.1 ([2], [12]). Let X be an algebraic variety, L a G-ample
line bundle on X (i.e., G-linearized and G-effective). Then there are open
sets Xs(L) ⊂ Xss(L) ⊂ X (the stable and semi-stable loci), such that the
quotient

π : Xss(L)→ Xss(L)//G
is quasi-projective and a “good categorical quotient”. This says (among other
things) that for any other G-invariant morphism g : Xss(L) → Z, there is
a unique morphism h : Xss(L)//G → Z satisfying h ◦ π = g. If we restrict
to Xs(L), then we have a “geometric quotient”. This says (among other
things) that the geometric fibers are orbits of the geometric points of X, and
the regular functions on Xs(L)/G are G-equivariant functions on X.

When X is proper over C (as in this case) and L is ample, then Xss(L)//G
will be projective [12].

We now consider the case when G = SL2(C) and X = (P1)n×Pr
d described

above in Section 1. We see that in this case any line bundle admits a unique
SL2(C) linearization.

Proposition 2.2.

PicG((P1)n × Pr
d) ∼= Zn+1.

Proof. For any vector ~k = (k1, . . . , kn, kn+1) ∈ Zn+1, we define a line bun-
dle on (P1)n × Pr

d by

L~k =
n+1⊗
i=1

π∗i (O(ki)),

where πi is projection onto the i-th component. Every line bundle on (P1)n×
Pr

d is isomorphic to L~k for some choice of ~k ([5]). We need only show that
each of these line bundles has one (and only one) linearization. However, since
each πi is G-equivariant, and each of the restrictions of L~k to a factor has a
unique linearization ([2]), L~k has a canonical G-linearization. �

Corollary 2.3.
L~k is ample ⇐⇒ ki > 0.
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Proof. If all ki > 0, then L~k defines the projective embedding

(P1)n × Pr
d

Veronese−−−−−→
∏n

i=1 P(1+ki)−1 × P(rd+r+d+kn+1
rd+r+d )−1

Segre−−−−→ P
“
(
Qn

i=1 1+ki)×(rd+r+d+kn+1
rd+r+d )

”
−1.

On the other hand, if some multiple of L~k defines a closed embedding, re-
stricting it to any factor will be ample. But this is OP1(ki) (or OPr

d
(kn+1))

and these are ample iff ki, kn+1 > 0. �

In order to find the stable and semi-stable loci in (P1)n × Pr
d, we will look

at the image under the above Veronese/Segre maps. The main point is the
following.

Proposition 2.4. Let Ω be the composition of the Veronese and Segre
maps above. Then

((P1)n × Pr
d)

ss(L~k) = Ω−1

{(
P

“
(
Qn

i=1 1+ki)×(rd+r+d+kn+1
rd+r+d )

”
−1
)ss

(O(1))
}

and similarly for the stable locus.

Proof. Call the image projective space PBIG. First, we show that there is
an action ofG on Pk such that the Veronese map P1 → Pk isG equivariant. We
need a representation of G in GL(k + 1). We write it out explicitly, choosing
[x, y] as coordinates on P1 and the obvious coordinates [xk : xk−1y : · · · : yk]
on Pk, as follows:

ρ : G→ GL(k + 1)(
a b
c d

)
→ [ai,j ]ki,j=0,

where

ai,j =
j∑

n=0

(
k − i
n

)(
i

j − n

)
bnak−i−ndj−nci−j+n.

This is the coefficient of xk−jyj in (ax + by)k−i(cx + dy)i, and it is a homo-
morphism. We can define the representation of G into GL(

(
rd+r+d+kn+1

rd+r+d

)
)

similarly. We now have representations

ρi : G→ GL(ki + 1) and ρn+1 : G→ GL

((
rd+ r + d+ kn+1

rd+ r + d

))
.

We define the action on PBIG by taking the tensor representation. This
extends to an action on all of PBIG. Thus Ω is G-invariant by construction.

Take the composition (P1)n×Pr
d → Ω((P1)n×Pr

d) ↪→ PBIG. We apply the
following theorem from [12] to each of these arrows.
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Theorem 2.5 ([12, p. 46]). Assume that f : X → Y is finite, G-equivariant
with respect to actions of G on X and Y . If X is proper over k (C for us)
and M is ample on Y , then

Xss(f∗M) = f−1{Y ss(M)}
and the same result holds for the stable locus.

Finally, that Ω∗O(1) = L~k is obvious. �

We are now able to determine the stable and semi-stable locus in the linear-
sigma model.

Theorem 2.6. Let ~k = (k1, k2, . . . , kn+1) ∈ Zn+1
+ . Then [x1 : y1] × · · · ×

[xn : yn]× [aj
i ] ∈ ((P1)n × Pr

d)
ss(L~k) (respectively ∈ ((P1)n × Pr

d)
s(L~k)) if for

every point p ∈ P1

∑
i | [xi:yi]=p

ki + dp · kn+1 ≤
1
2

(
n∑

i=1

ki + d · kn+1

)
(respectively, if the above holds with strict inequality), where dp is the degree
of common vanishing of the forms f0, . . . , fr at p ∈ P1.

Proof. We prove the theorem by first looking at the action of a maximal
torus acting on PBIG. Here, there is only one line bundle, so everything is
canonical. Then we pull back to find the corresponding locus in (P1)n × Pr

d.
We then move on to the entire group G.

Let T be the maximal torus of SL2(C), equal to the image of the 1-
parameter subgroup

λ(t) =
(
t−1 0
0 t

)
.

We choose coordinates aj
i on Pr

d, where aj
i is the coefficient of xd−iyi in

fj(x, y). Similarly, we choose the following coordinates on PBIG. For 0 ≤
si ≤ ki (1 ≤ i ≤ n), and vij such that

∑d
i=0

∑r
j=0 vij = kn+1, we take the

coordinate xki−si
i ysi

i (aj
i )

vij . Then T acts on PBIG by

λ(t) · (xki−si
i ysi

i (aj
i )

vij )→ t(
Pn

i=1 2si−ki)+(
P

ij(d−2i)vij)xki−si
i ysi

i (aj
i )

vij .

By the above lemma, we know that it is enough to compute the semi-stable
locus of this action on PBIG and pull it back via the various inclusions and
embeddings. Luckily we know how to compute the semi-stable locus of a torus
acting on a projective space. From [2] we know that a point of projective space
is stable (resp semi-stable) with respect to T if and only if 0 ∈ interior(wt)
(respectively 0 ∈ wt). In our case, the weight set (wt) is the subset of{

−
n∑

i=1

ki − d · kn+1, . . . ,

n∑
i=1

ki + d · kn+1

}
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consisting of powers of t such that the coordinate xki−si
i ysi

i (aj
i )

vij is non zero.
If the point is unstable, then all the powers (

∑n
i=1 2si−ki)+(

∑
ij(d−2i)vij)

are < 0 (or all are > 0.) So xki−si
i ysi

i (aj
i )

vij = 0 if

0 ≤

 n∑
i=1

(2si − ki) +
∑
ij

(d− 2i)vij

 ⇐⇒
0 ≤ 2

n∑
i=1

(si − ki)− 2
∑
ij

i · vij +
n∑

i=1

ki + dkn+1 ⇐⇒

∑
ij

i · vij +
n∑

i=1

(ki − si) ≤
1
2

(
n∑

i=1

ki + dkn+1

)
.

Define the following sets in (P1)n × Pr
d:

US =

{
[x1 : y1]× · · · × [xn : yn]× [aj

i ]
∣∣∣ xki−si

i ysi
i (aj

i )
vij = 0 if

∑
ij

i · vij +
n∑

i=1

(ki − si) ≤
1
2

(
n∑

i=1

ki + dkn+1

)}
and

X =

{
[x1 : y1]× · · · × [xn : yn]× [aj

i ]
∣∣∣

1
2

(
n∑

i=1

ki + dkn+1

)
<

∑
[xi:yi]=[1:0]

ki + kn+1 · d[1:0]

}
.

We show that US = X.
First, assume that X ⊂ US. Let x = {[x1 : y1]× · · · × [xn : yn]× [aj

i ]} be
in US \X. So, xki−si

i ysi
i (aj

i )
vij = 0 if∑

ij

i · vij +
n∑

i=1

(ki − si) ≤
1
2

(
n∑

i=1

ki + dkn+1

)
.

But we also have∑
[xi:yi]=[1:0]

ki + kn+1 · d[1:0] ≤
1
2

(
n∑

i=1

ki + dkn+1

)
.

Then, take si = 0 if [xi : yi] = [1 : 0]. And at least one of the aj
d[1:0]

6= 0. For
that value of j, let vij = kn+1. Then we have

n∑
i=0

(ki − si) +
∑
ij

i · vij =
∑

[xi:yi]=[1:0]

ki + kn+1 · d[1:0] ≤
1
2

(
n∑

i=1

ki + dkn+1

)
.
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The coordinate xki−si
i ysi

i (aj
i )

vij is 6= 0 by construction, which says that x /∈
US, a contradiction. Thus US ⊆ X.

Now, assume that US ⊂ X Take y = {[x1 : y1] × · · · × [xn : yn] × [aj
i ]} ∈

X \ US. So xki−si
i ysi

i (aj
i )

vij 6= 0, but

∑
ij

i · vij +
n∑

i=1

(ki − si)} ≤
1
2

(
n∑

i=1

ki + dkn+1

)
.

Combining this with the fact that y ∈ X, we see that
n∑

i=1

(ki − si) +
∑
ij

i · vij <
∑

[xi:yi]=[1:0]

ki + kn+1 · d[1:0].

Then, for all i with [xi : yi] = [1 : 0], we must have si = 0. Thus,∑
[xi:yi]=[1:0]

ki ≤
n∑

i=1

(ki − si).

Similarly, since (aj
i )

vij 6= 0, we know that if (aj
i ) = 0, then vij = 0. Thus,

r∑
j=0

d∑
i=0

i · vij =
r∑

j=0

d∑
i=d[1:0]

i · vij ≥ d[1:0]

∑
ij

vij = d[1:0] · kn+1.

Combining these gives our contradiction, showing that X ⊆ US as desired.
If we repeat this calculation, replacing the condition (

∑n
i=1 2si − ki) +

(
∑

ij(d− 2i)vij) < 0 with (
∑n

i=1 2si − ki) + (
∑

ij(d− 2i)vij) > 0, we get the
following lemma.

Lemma 2.7. [x1 : y1]× · · · × [xn, yn]× [aj
i ] is unstable with respect to T if

∑
i | [xi:yi]=[1:0]

ki + kn+1 · d[1:0] >
1
2

(
n∑

i=1

ki + dkn+1

)
or ∑

i | [xi:yi]=[0:1]

ki + kn+1 · d[0:1] >
1
2

(
n∑

i=1

ki + dkn+1

)
.

We are now ready to move on to stability with respect to G. Suppose that
[x1 : y1]× · · · × [xn, yn]× [aj

i ] is stable with respect to G and there is a point
p in P1 such that ∑

[xi:yi]=p

ki + kn+1 · dp >
1
2

(
n∑

i=1

ki + dkn+1

)
.



A GIT CONSTRUCTION OF M0,n(Pr, d) 1013

Let g ∈ G map p→ [1 : 0]. Then g · [x1 : y1]× · · · × [xn, yn]× [aj
i ] is unstable

with respect to T , and [x1 : y1]× · · · × [xn, yn]× [aj
i ] is unstable with respect

to G, contradicting the assumption.
Now assume that [x1 : y1] × · · · × [xn, yn] × [aj

i ] is unstable, but has no
point p such that∑

i|[xi:yi]=p

ki + kn+1 · dp >
1
2

(
n∑

i=1

ki + dkn+1

)
.

Then there is some maximal torus T ′ for which [x1 : y1]×· · ·× [xn, yn]× [as] is
unstable. For any maximal torus in G, there is g ∈ G such that gT ′g−1 = T .
Then we have that g · [x1 : y1]× · · · × [xn, yn]× [aj

i ] is unstable with respect
to T , hence must have either [1 : 0] or [0 : 1] satisfying Lemma 2.7. Then
[x1 : y1]× · · · × [xn, yn]× [aj

i ] has g−1[1 : 0] satisfying Lemma 2.7. �

We are now ready to describe the chamber decomposition of the ample
cone of PicG((P1)n×Pr

d). As a first step we normalize our line bundle so that
we form the simplex

∆ =

{
(k1, k2, . . . , kn+1)

∣∣∣ n∑
i=1

ki + d · kn+1 = 2

}
.

Then for each subset I ∈ (1, 2, . . . , n) and each integer 0 ≤ dI ≤ d, we get a
wall WI,dI

given by ∑
i∈I

ki + dI · kn+1 = 1

and the walls break ∆ into chambers. Following [7], we mention the following
obvious statements.

(1) We have
WS,dS

= WSc,d−dS
.

(2) Each interior wall divides ∆ into two parts{
(k1, k2, . . . , kn+1)

∣∣∣ ∑
i∈I

ki + dI · kn+1 ≤ 1

}
and {

(k1, k2, . . . , kn+1)
∣∣∣ ∑

i∈I

ki + dI · kn+1 ≥ 1

}
.

(3) Two vectors ~k = (k1, . . . , kn+1) and ~k′ = (k′1, . . . , k
′
n+1) lie in the same

chamber if for all I ⊂ {1, 2, . . . } and 0 ≤ dI ≤ d, we have∑
i∈I

ki + dI · kn+1 ≤ 1 ⇐⇒
∑
i∈I

k′i + dI · k′n+1 ≤ 1.
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This means that vectors in the same chamber will define the same
stable and semi-stable loci, and hence the same quotient.

(4) There are semi-stable points that are not stable iff ~k lies on a wall.

Recall that our goal is not to take the GIT quotient of (P1)n×Pr
d, but that

of M0,n(Pr×P1, (d, 1)). Up to this point we have not said anything about the
stable or semi-stable loci in M0,n(Pr × P1, (d, 1)). We are able to pull back
the stable locus via φ, by the following theorem of Yi Hu [6].

Theorem 2.8 ([6]). Let π : Y → X be a G-equivariant projective mor-
phism between two (possibly singular) quasi-projective varieties. Given any
linearized ample line bundle L on X, choose a relatively ample linearized line
bundle M on Y . Assume moreover that Xss(L) = Xs(L). Then there exists
an n0 such that when n ≥ n0, we have

Y ss(π∗Ln ⊗M) = Y s(π∗Ln ⊗M) = π−1{Xs(L)}.

For example, the locus of maps in M0,0(Pr ×P1, (d, 1)) that are stable will
be maps such that no tooth of the comb C has degree ≥ d/2. Figure 1 below
shows how the stable locus depends on the line bundle.

(1,1)

(1,0) (1,0)

(1,0)

(1,0)

(1,1)

(1,1) (1,1)

1

2
3 3

1

2

1

2
3

3

Unstable for (1,1,1,1) Stable for (1,1,1,1)

Unstable for (1,1,3,1) Unstable for (1,1,3,1)

1

2

Figure 1. Stable locus of M0,3(Pr × P1, (2, 1))
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3. The geometric quotient

We are now ready to present our GIT description of M0,n(Pr, d). The
construction is similar to that of M0,n from [8]. We state it similarly. First
let E be an effective divisor with support the full exceptional locus of φ, such
that −E is φ ample. Such an E exists by the following lemma from [11].

Lemma 3.1 ([11, p. 70]). Let f : X → Y be a birational morphism. As-
sume that Y is projective and X is Q-factorial. Then there is an effective
f-exceptional divisor E such that −E is f-ample.

M0,n(Pr × P1, (d, 1)) is Q-factorial because it is locally the quotient of a
smooth scheme by a finite group.

Theorem 0.1. For each linearized line bundle L ∈ PicG((P1)n×Pr
d) such

that
((P1)n × Pr

d)
ss(L) = ((P1)n × Pr

d)
s(L) 6= ∅

and for each sufficiently small ε > 0, the line bundle L′ = φ∗(L)(−εE) is
ample and

(M0,n(Pr × P1, (d, 1)))ss(L′) = (M0,n(Pr × P1, (d, 1)))s(L′)
= φ−1{((P1)n × Pr

d)
ss(L)}.

There is a canonical identification

(M0,n(Pr × P1, (d, 1)))s(L′)/G = M0,n(Pr, d)

and a commutative diagram

(M0,n(Pr × P1, (d, 1)))ss(L′) f−−−−→ M0,n(Pr, d)

φ

y y
((P1)n × Pr

d)
ss(L) −−−−→ ((P1)n × Pr

d)
ss(L)/G

where φ is the generalized Givental map, f is the forgetful morphism.

Proof. To prove the first two statements, we apply the above quoted the-
orem of Hu [6] (Theorem 2.8). Following the notation from [8], let U be the
semi-stable locus in (P1)n×Pr

d for the above action of G corresponding to L~k.
Recall that this corresponds to ([xi, yi], f0, . . . fr) such that for any p ∈ P1,
we have ∑

i|[xi:yi]=p

ki + kn+1 · dp ≤
1
2

(
n∑

i=1

ki + kn+1 · d

)
.

Let U ′ = φ−1(U). Let the corresponding quotients be Q and Q′. We have the
obvious composition of G invariant maps:

U ′ → U → Q.



1016 ADAM E. PARKER

By the universal properties of GIT quotients, we get a proper birational map
Q′ → Q. Similarly, since G acts trivially on M0,n(Pr, d), we have by the
universal property again a proper birational map from Q′ →M0,n(Pr, d). We
will show that this is an isomorphism by showing that both sides have the
same Picard number. This is enough since both sides are Q-factorial. We
have

ρ(Q′) = ρ(U ′) = ρ(U) + e(U) = ρ(Q) + e(U),

where e(u) is the number of φ-exceptional divisors that meet U ′. Since φ is an
isomorphism on the open locus M0,n(Pr × P1, (d, 1)) ⊂M0,n(Pr × P1, (d, 1)),
we need only look at the boundary divisors in M0,n(Pr × P1, (d, 1)). We use
Lemma 3.2 to see which divisors are exceptional.

Lemma 3.2.
φ(D(N1, N2, d1, d2)) ⊂ (P1)n × Pr

d

has codimension |N2|+ (r + 1)d2 − 1.

Proof. The idea for this proof comes from Kirwan [10]. First notice that

φ(D(N1, N2, d1, d2)) = (p1, p2, . . . , pn, f0, . . . , fr),

where pi = pj for i, j ∈ N2, and each of the fs vanishes at that point of
multiplicity d2.

First, we calculate the codimension of (p1, p2, . . . , pn, f0, . . . , fr), where
each of the pi is [0 : 1], and where each of fj has a zero of order d2 at [0 : 1] and
one of order d− d2 = d1 at [1 : 0] (i.e., each fj consists of only the monomial
xd2yd1). It is clear this has codimension n + rd + r + d − r = n + (r + 1)d.
If we remove the condition that each fj have a root of order d1 at [1 : 0],
then we allow each fj to have higher powers of x. We also remove the con-
dition that those pi with i /∈ N2 are equal to [0 : 1]. Thus we see that the
set of (p1, p2, . . . , pn, f0, . . . , fr) such that [0 : 1] = pi for i ∈ N2, and each fi

vanishes at [0 : 1] with multiplicity d2 has codimension

n+ (r + 1)d− (r + 1)d1 − |N1| = |N2|+ (r + 1)d2.

Finally, we act on this set by G. We subtract one from the above codimen-
sion because G has dimension two, but we do not count the two dimensional
stabilizer of [0 : 1]. �

Next we show that ρ(Q′) is independent of the chamber that L~k comes
from. We check that as we cross a wall WI,dI

, ρ(Q′) does not change. Let our
two open sets be U1 and U2. Recall that WI,dI

breaks our chamber into two
parts {

(k1, . . . , kn, kn+1)
∣∣∣ ∑

i∈I

ki + dI · kn+1 ≤ 1

}
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and {
(k1, . . . , kn, kn+1)

∣∣∣ ∑
i∈I

ki + dI · kn+1 ≥ 1

}
,

so suppose that U1 meets the first set. Notice that U ′
1 and U ′

2 meet the same
divisors D(N1, N2, d1, d2) except that U ′

1 meets D(Ic, I, d − dI , dI) but not
D(I, Ic, dI , d−dI). Similarly, U ′

2 meets D(I, Ic, dI , d−dI) but not D(Ic, I, d−
dI , dI).

If 2 < |I|, 1 < r and 1 ≤ dI ≤ d, or r = 1 and 1 < di ≤ d, then Q1 99K Q2

is a small modification (an isomorphism in codimension 1 in the notation of
[11]). Hence ρ(Q1) = ρ(Q2), and it is clear that e(U1) = e(U2).

If 2 = |I| and dI = 0, then we see that Q1 99K Q2 contracts the divisor
(p1, . . . , pn, f0, . . . fr), where pi = pj , i, j ∈ I. Therefore ρ(Q1) = ρ(Q2) + 1.
However, by Lemma 3.2, we see that the divisor D(Ic, I, d, 0) with |I| = 2
lying over U1 is not exceptional, while its complement D(I, Ic, 0, d) lying over
U2 is exceptional. Hence e(U2) = e(U1) + 1. Putting these together we see
that ρ(Q′

1) = ρ(Q′
2) as desired.

If r = 1, |I| = 0, dI = 1, then we see that Q1 99K Q2 contracts the divisor
(p1, . . . , pn, f0, f1), where f0, f1 have a common root. Therefore ρ(Q1) =
ρ(Q2) + 1. However, by Lemma 3.2, we see that the divisor D(N, 0, d− 1, 1)
lying over U1 is not exceptional, while its complement D(0, N, 1, d − 1) is
contracted. Hence e(U2) = e(U1) + 1. Putting these together we see that
ρ(Q′

1) = ρ(Q′
2) as desired.

Finally, we prove the theorem for one vector of one chamber. Here we
look at all divisors D(N1, N2, d1, d2) ⊂ M0,n(Pr × P1, (d, 1)). We have 2n

ways to distribute the n points on the domain curve, and we can label the
collapsed component with any degree ≤ d. Hence there are 2n(d+1) potential
configurations. However the configurations D(I, Ic, d, 0) are not stable maps
if |I| = n or |I| = n − 1. Hence there are 2n(d + 1) − n − 1 total boundary
divisors in M0,n(Pr × P1, (d, 1)). We need to determine how many are stable
(with respect to the group). This requires several calculations, as a given
linearization ~k may lie in a maximal chamber for certain values of d, n, but lie
on a wall for others. All the calculations are very similar. Assume that r > 1.

Case 1: d + n odd, d > n.. We choose the linearization correspond-
ing to (1, 1, 1, . . . , 1, 1). We count the unstable divisors, i.e., the number of
D(N1, N2, d1, d2) such that

|N2|+ d2 ≥
d+ n+ 1

2
.

Any divisor D(N1, N2, d1, d2) with d+n+1
2 ≤ d2 ≤ d is unstable. There are

2n(d−n+1
2 ) of these. Thus the total number of unstable divisors is
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2n

(
d− n+ 1

2

)
+

# with d2=
d+n−1

2︷ ︸︸ ︷
(2n −

(
n

0

)
) +

# with d2=
d+n−3

2︷ ︸︸ ︷
(2n −

(
n

0

)
−
(
n

1

)
) +

· · ·+

# with d2=
d−n+1

2︷ ︸︸ ︷
2n −

(
n

0

)
−
(
n

1

)
− · · · −

(
n

n− 1

)
= 2n

(
d− n+ 1

2

)
+ n2n − n

(
n

0

)
− (n− 1)

(
n

1

)
− · · · − 1

(
n

n− 1

)
= 2n

(
d− n+ 1

2

)
+ n2n − n

(
n

n

)
− (n− 1)

(
n

n− 1

)
− · · · − 1

(
n

1

)
= 2n

(
d− n+ 1

2

)
+ n2n −

n∑
i=1

(i)
(
n

i

)
= 2n

(
d− n+ 1

2

)
+ n2n − n2n−1 = 2n−1(d+ 1).

Hence the total number of stable divisors is 2n−1(d+ 1)− 1− n (stable with
respect to the group). Of these all are φ-exceptional all except those for which
Ic = 2 (by Corollary 3.2), so there are 2n−1(d+1)−1−n−

(
n
2

)
φ-exceptional

divisors. Thus, since ρ(Q) = n+ 1,

ρ(Q′) = ρ(Q) + e(U) = n+ 1 + 2n−1(d+ 1)− 1− n−
(
n

2

)
= 2n−1(d+ 1)−

(
n

2

)
.

Case 2: d+n odd, d < n.. We again choose the linearization corresponding
to (1, 1, 1, . . . , 1, 1).

Case 3: d+ n even, n odd.. We choose the linearization corresponding to
(1, 1, . . . , 1, 2).

Case 4: d+ n even, n even.. We choose the linearization corresponding to
(1, 2, 2, . . . , 2, 1).

Note that care must be taken when n = 2 and d = 1, 2, since in this case
ρ((P1)n×Pr

d) is equal to 2 for the given linearizations (instead of the expected
number 3). This is because the unstable locus contains a divisor. However,
we do not need to subtract out the divisor D(0, 2, d1, d2) for not being φ-
exceptional, because it is unstable with respect to the group. Thus, the sums
work out to be the same.
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We have shown for every line bundle such that the stable locus equals the
semi-stable locus that ρ(Q′) = 2n−1(d+ 1)−

(
n
2

)
. From [14] we have

ρ(M0,n(Pr, d)) = 2n−1(d+ 1)−
(
n

2

)
.

This completes the proof for r > 1.
When r = 1, we repeat the above construction. Here we see, by Corollary

3.2, that the divisor D(N, 0, d− 1, 1) is not φ-exceptional. So we subtract one
from the above count of φ-exceptional divisors. Thus

ρ(Q′) = ρ(Q) + e(U) = n+ 1 + 2n−1(d+ 1)− 2− n−
(
n

2

)
= 2n−1(d+ 1)−

(
n

2

)
− 1.

This agrees with the value of ρ(M0,n(P1, d)) obtained as an immediate con-
sequence of Theorem 4.4 in [1].

In the case when r = 0, we have either d = 0 or the moduli space is empty.
Thus P0

0 = pt. The calculation follows since now we are only dealing with
stable curves, and not stable maps, and was proven originally in [8]. We
obtain that

ρ(Q′) = 2n−1 −
(
n

2

)
− 1 = ρ(M0,n). �

There are three immediate corollaries that are interesting. The first is a
new proof of a result of Keel and Hu [8]. By letting d, r = 0 in the above
theorem we have:

Corollary 3.3 ([8]). For each linearized line bundle L ∈ PicG((P1)n)
such that

((P1)n)ss(L) = ((P1)n)s(L) 6= ∅
and for each sufficiently small ε > 0, the line bundle L′ = φ∗(L)(−εE) is
ample and

(P1[n])ss(L′) = (P1[n])s(L′) = φ−1((P1)n)ss(L).

There is a canonical identification

(P1[n])s(L′)/G = M0,n

and a commutative diagram

(P1[n])ss(L′) f−−−−→ M0,n

φ

y y
((P1)n)ss(L) −−−−→ ((P1)n)ss(L)/G)
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Proof. In the case when d = 1 and r = 1, we have that

M0,n(P1, 1) = P1[n],

where P1[n] is the Fulton-MacPherson compactification of n points on P1. The
Fulton-MacPherson map P1[n] → (P1)n is exactly the product of evaluation
morphisms φ. �

Secondly, we find that the Grassmannian of lines is a GIT quotient of a
projective space.

Corollary 3.4. The Grassmannian of lines in Pr is the GIT quotient of
Pr

1 = P2(r+1)−1 by the above action of G.

Proof. We know that M0,0(Pr, 1) = M0,0(Pr, 1) = G(1, r). By the theorem

(M0,0(Pr × P1, (1, 1)))s/G = G(1, r).

But M0,0(Pr × P1, (1, 1))s = M0,0(Pr × P1, (1, 1)) ∼= (Pr
1)

s. Note that when
n = 0, there is only one ample line bundle (up to multiples) on the linear
sigma model and it has a unique linearization. �

The third corollary constructs M0,0(Pr, d) as a sequence of intermediate
moduli spaces. It requires more background, and is given in the next section.

4. Intermediate moduli spaces

In the case when n = 0, we obtain as a corollary a factorization of the
induced map

ϕ̄ : M0,0(Pr, d)→ (Pr
d)

s/Aut(P1)

into a sequence of intermediate moduli spaces, such that the map between
successive spaces is “almost” a blow-up. We will use a factorization of the
Givental map ϕ presented in [13]. We give the necessary definitions and results
here.

Recall the construction of M0,0(Pr, d) presented by Fulton and Pandhari-
pande in [3]. Given a basis of hyperplanes t̄ ∈ H0(P1,O(1)), there is an open
subset Ut̄ ⊂M0,0(Pr, d) such that if we pull back those hyperplanes, the cor-
responding domain curves along with the sections will be (r + 1)d pointed
stable curves. By choosing an ordering on the sections, we get an étale rigidi-
fication of this open set by a smooth moduli space, denoted by M0,0(Pr, d, t̄),
that is a (C∗)r bundle over M0,d(r+1):

M0,d(r+1) ⊃ B
(C∗)r

←−−−− M0,0(Pr, d, t̄)
(Sd)r+1

−−−−−→ Ut̄ ⊂M0,0(Pr, d).

M0,0(Pr, d) is then constructed by gluing together the Ut̄ for different choices
of t̄.
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In [13], Mustaţǎ constructs similar rigidifications of M0,0(Pr × P1, (d, 1))
and Pr

d that are (C∗)r bundles over P1[d(r+1)] and (P1)d(r+1), where P1[d(r+
1)] is the Fulton-MacPherson compactification of d(r + 1) points on P1:

P1[d(r + 1)] ⊃ B (C∗)r

←−−−− G(r, d, t̄)
(Sd)r+1

−−−−−→ Ut̄ ⊂M0,0(Pr × P1, (d, 1))

F−M

y ϕ(t̄)

y ϕ

y
(P1)d(r+1) (C∗)r

←−−−− Pr
d(t̄)

(Sd)r+1

−−−−−→ Pr
d

The factorization of ϕ is obtained by gluing together the pull back of the
following factorization of the Fulton-MacPherson map.

Definition/Theorem 4.1 ([13, p. 13]). Consider a degree 1 morphism
φ : C → P1 having as domain C a rational curve with N marked points. The
morphism will be called n-stable if:

(1) Not more than N − n of the marked points coincide.
(2) Any ending curve that is not the parametrized component contains

more than N − n points.
(3) All the marked points are smooth, and every component that is not

the parametrized component has at least three distinct special points.

There is a smooth projective moduli space P1[N,n] for families of n-stable
degree 1 morphisms. Moreover P1[N,n] is the blow-up of P1[N,n − 1] along
the strict transforms of the n-dimensional diagonals in (P1)N .

There is an analogous factorization of ϕ(t̄).

Definition/Theorem 4.2 ([13, p. 22]). A (t̄, d, k)-acceptable family of
morphism over S is given by the following data:

(π : C → S, φ : C → P1, {qi,j}0≤i≤n,1≤j≤d,L, e),

where:

(1) The family (π : C → S, φ : C → P1, {qi,j}0≤i≤n,1≤j≤d) is a (r+ 1)(k−
1) + 1 stable family of degree 1 morphisms to P1.

(2) L is a line bundle on C.
(3) e : Or+1

C → L is a morphism of sheaves with π∗e nowhere zero and
that, via the natural isomorphism H0(Pn,O(1)) ∼= H0(S×P1,Or+1

S×P1)
we have

(e(t̄i) = 0) =
d∑

j=1

qi,j .

There is a smooth moduli space Pr
d(t̄, k) for these families that is a torus bundle

over an open subset of P1[(r + 1)d, (r + 1)(k − 1) + 1].
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Finally, [13] creates global objects factoring ϕ in the same way asM0,0(Pr, d)
was constructed in [3].

Definition/Theorem 4.3 ([13, p. 23]). A (d, k)-acceptable family of
morphisms is given by the following data:

(π : C → S, µ = (µ1, µ2) : C → Pr × P1,L, e),

where:
(1) L is a line bundle on C which, together with the morphism

e : Or+1
C → L

determines the rational map µ1 : C → Pr.
(2) For any s ∈ S and any irreducible component C ′ of Cs, the restriction

eC′ : Or+1
C′ → LC′ is non-zero.

(3) For any s ∈ S, degLCs = d and the image eCs(H) ∈ H0(Cs,LCs)
of a generic section H ∈ H0(Cs,Or+1

Cs
) determines the structure of a

(r + 1)(k − 1) + 1 stable morphism on µ2 : Cs → P1.
There is a projective coarse moduli space Pr

d(k) for these objects.

It is exactly these objects of which we take the quotient by Aut(P1). After
taking the quotient, there is no longer a parametrized component to refer to
in the above definitions. However, when d is odd, there is a unique component
of the domain curve that will play this role.

Proposition 4.4. Let C be a connected genus-0 curve such that each edge
is labeled with a number d. If

∑
di is odd, then there is a unique irreducible

component C̄ such that if C is a comb with handle C̄, no tooth has sum of
degrees > d/2

Proof. Let {C}d/2 be the set of all connected subcurves of degree ≥ d/2.
Intersect all such subcurves. There is a unique component in the intersection
that will be C̄. �

Definition 4.5. A (d, k)∗ acceptable morphism is given by the following
data:

(π : C → S, µ : C → Pr,L, e),
where:

(1) L is a line bundle on C which, together with the morphism

e : Or+1
C → L

determines the rational map µ : C → Pr.
(2) For any s ∈ S and any irreducible component C ′ of Cs, the restriction

eC′ : Or+1
C′ → LC′ is non-zero.
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(3) For any s ∈ S, degLCs
= d and the image eCs

(H) ∈ H0(Cs,LCs
)

of a generic section H ∈ H0(Cs,Or+1
Cs

) determines the structure of a
(r + 1)(k − 1) + 1-stable rigid morphism, where C̄s plays the role of
the parametrized component in the definition of an n-stable degree 1
morphism above.

Corollary 4.6. There is a projective coarse moduli space M0,0(Pr, d, k)
for families of (d, k)∗ acceptable morphisms.

Proof. We show that

M0,0(Pr, d, k) := (Pr
d(k))

s/Aut(P1)

satisfies the properties of a coarse moduli space. This quotient is constructed
identically to that from Theorem 0.1. We pull back the stable locus from Pr

d

by 2.8. Again, the stable locus in Pr
d(k) will be those (d, k)-acceptable maps

such that no tooth has degree > d/2. The universal properties of this space
are inherited from the universal properties of Pr

d(k) as well as the universal
properties of a categorical quotient.

First we need to show that there is a natural transformation of functors

φ :M0,0(Pr, d, k)→ HomSch(∗,M0,0(Pr, d, k)),

where M0,0(Pr, d, k) is the obvious moduli functor {schemes} → {sets}.
Given a family of (d, k)∗-acceptable morphisms

(π : C → S, µ : C → Pr,L, e)
we can get a (d, k)-acceptable morphism

(π : C → S, µ = (µ1, µ2) : C → Pr × P1,L, e)
by taking µ2 : C → P1 to be identity on C̄s and constant on the other com-
ponents. This will lie in the stable locus by construction, and thus gives
a map S → (Pr

d(k))
s. Composing with the quotient gives an element of

HomSch(S,M0,0(Pr, d, k)).
We need to show that, given a scheme Z and a natural transformation of

functors ψ :M0,0(Pr, d, k) → HomSch(∗, Z), there exists a unique morphism
of schemes

γ : M0,0(Pr, d, k)→ Z

such that ψ = γ̃ ◦ φ. By the above argument, we have a functor

M0,0(Pr, d, k)→ (Pr
d(k))s.

Thus we get a functor

ψ̄ : (Pr
d(k))s → HomSch(∗, Z),

which by representability gives a map

γ̄ : (Pr
d(k))

s → Z.
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This map is G equivariant by construction, and hence factors though the
quotient

γ : M0,0(Pr, d, k)→ Z. �

We can sum up this corollary with the following figure:

P1
[N ] = P1

(N, N − 1) �C∗
G(t̄)

Sr
d- M0,0(Pr × P1

, (d, 1))

P1
[N, (r + 1)(d − 2) + 1]

?
�C
∗

Pr
d(t̄, d − 1)

?
Sr

d - Pr
d(d − 1)

?
M0,0(Pr

, d)

-

.

.

.

?
.
.
.

?
.
.
.

?

M0,0(Pr
, d, d − 1)

?-

P1
[N, 1]

?
� C∗

Pr
d(t̄, 1)

?
Sr

d - Pr
d(1)

? .
.
.

?

(P1
)
N

= P1
[N, 0]

?
� C∗

Pr
d(t̄)

?
Sr

d - Pr
d

?
M0,0(Pr

, d, 1)

?-

Pr
d//G

?-

Notice that Pr
d/G = M0,0(Pr, d, 1) = · · · = M0,0(Pr, d, d+1

2 ). This is be-
cause up to that point, the exceptional loci of the blow-ups will lie outside
the stable locus. For example, the exceptional divisor of Pr

d(t̄, 1)→ Pr
d(t̄) cor-

responds to a curve with two components. One component is parametrized,
and the other has all d(r + 1) points on it.
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