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ON DOMINATION OF INESSENTIAL ELEMENTS IN
ORDERED BANACH ALGEBRAS

D. BEHRENDT AND H. RAUBENHEIMER

Abstract. If A is an ordered Banach algebra ordered by an algebra
cone C, then we reference the following problem as the ‘domination
problem’: If 0 ≤ a ≤ b and b has a certain property, then does a
inherit this property? We extend the analysis of this problem in the
setting of radical elements and introduce it for inessential, rank one and
finite elements. We also introduce the class of r-inessential operators on
Banach lattices and prove that if S and T are operators on a Banach
lattice E such that 0 ≤ S ≤ T and T is r-inessential then S is also
r-inessential.

1. Introduction

Throughout this paper we will consider A to be a complex Banach algebra
with identity 1 satisfying the minimum requirement that A be semiprime, that
is, xAx = {0} implies x = 0 holds for all x ∈ A. The spectrum of an element a
in A will be denoted by σ(a,A) and the spectral radius by r(a,A). Whenever
the meaning is clear, we will drop the A from σ(a) and r(a). We denote the
set of quasinilpotent elements in A by QN(A) and the radical of A by Rad(A).
Recall that Rad(A) = {a ∈ A | aA ⊂ QN(A)}. A Banach algebra is called
semisimple if its radical consists of zero only. It is not difficult to show that if
a Banach algebra is semisimple then it is semiprime. In [10, Definition 2.2] J.
Puhl defines a nonzero element u of a semiprime Banach algebra to be rank
one if uAu ⊂ CA. As various authors expanded on Puhl’s work numerous
other definitions and characterisations of rank one elements surfaced, deeming
it necessary to rename Puhl’s definition as spatially rank one elements. In [7]
R. Harte defines a nonzero element u of a semiprime Banach algebra to be
spectrally rank one if #σ(xu)\{0} ≤ 1 for all x in A where # denotes the
number of elements in a set. Moreover, he shows that every spatially rank
one element is spectrally rank one. The converse is true when A is semisimple.
For our means, we will term a nonzero element of a semiprime Banach algebra
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rank one if it satisfies the definition of J. Puhl. We shall denote the set of
rank one elements by F1. For properties of these elements we refer to [7],
[10]. An element of a semiprime Banach algebra is termed a finite element
if it can be written as a finite sum of rank one elements. The set of these
elements will be denoted by F . By an ideal in a Banach algebra we mean a
two sided ideal. If F is an ideal in a Banach algebra A then an element a in
A is called Riesz relative to F if a+ F̄ ∈ QN(A/F̄ ). The set of these elements
will be denoted by R(F ). The inessential elements in A relative to F is the
set {a ∈ A | a + F̄ ∈ Rad(A/F̄ )}. These elements will be denoted by kh(F ).
It is clear that

(1) F1 ⊂ F ⊂ kh(F) ⊂ R(F).

Recall the construction of an ordered Banach algebra (OBA) (A,C) in [9],
[12] ordered by an algebra cone C. Let (A,C) be an OBA. If 0 ≤ a ≤ b
relative to C implies that r(a) ≤ r(b) then we say that the spectral radius is
monotone w.r.t. C. If F is a closed ideal in A and if π : A → A/F is the
canonical homomorphism, then (A/F, πC) is an OBA. The spectral radius in
(A/F, πC) is monotone if F ≤ a + F ≤ b + F in A/F relative to πC implies
that r(a + F,A/F ) ≤ r(b + F,A/F ). An algebra cone C in an OBA (A,C) is
termed generating if every element in A can be written as a linear combination
over C of positive elements, i.e., A = spanC. Moreover, it is easy to see that
if F is a closed ideal of A then the algebra cone πC in the OBA (A/F, πC) is
generating when the algebra cone C is generating in (A,C).

Let X be a Banach space. An operator T in the Banach algebra L(X)
of bounded linear operators on X is called a Riesz operator if T + K(X) is
quasinilpotent in the quotient algebra L(X)/K(X), where K(X) is the closed
ideal of compact operators on X. We denote the set of Riesz operators on
X by R(X). An operator S in L(X) is called inessential if S + K(X) is in
the radical of the quotient algebra L(X)/K(X). Let E be a Banach lattice.
An operator T : E → E is termed regular if it can be written as a linear
combination over C of positive operators. The space of regular operators on
E is denoted by Lr(E) and it is a subspace of L(E). If Lr(E) is provided
with the r-norm

‖T‖r = inf{‖S‖ | 0 ≤ S ∈ L(E), |Tx| ≤ S|x| for all 0 ≤ x ∈ E}

it becomes a Banach algebra which contains the identity of L(E). More-
over, if E is Dedekind complete, then Lr(E) is a Banach lattice under the
r-norm ‖T‖r = ‖ |T | ‖. An operator T in Lr(E) is called r-compact if it can
be approximated in the r-norm by operators of finite rank [2]. This set is
denoted by Kr(E). Since Kr(E) is a closed ideal in Lr(E), Lr(E)/Kr(E)
is a Banach algebra under the quotient norm. An operator T ∈ Lr(E) is
called r-asymptotically quasi finite rank if T +Kr(E) is quasinilpotent in the
quotient algebra Lr(E)/Kr(E); see [11]. We denote this set by R0(E). An



ON DOMINATION OF INESSENTIAL ELEMENTS 929

operator T ∈ Lr(E) is called r-inessential if T +Kr(E) is in the radical of the
quotient algebra Lr(E)/Kr(E). The set of these operators will be denoted by
kh(Kr(E)). If the set of finite rank operators on E is denoted by F(E), then
one can show that

(2) F(E) ⊂ Kr(E) ⊂ kh(Kr(E)) ⊂ R0(E) ⊂ R(E).

2. A perturbation result

Recall that a subset I of a Banach algebra A is called a multiplicative
ideal if IA ⊂ I and AI ⊂ I. For examples of multiplicative ideals in Banach
algebras which are not ideals we refer to [13]. In this section we will prove
that if 0 ≤ a, b in an OBA (A,C) with C closed and if b belongs to some
multiplicative ideal, then there exists a positive multiple ac of a such that
a − ac belongs to the multiplicative ideal. For b ∈ A and 0 6= λ /∈ σ(b) the
element (λ− b)−1 exists and for all p ∈ N

(3) λ(λ− b)−1 = 1 +
b

λ
+ . . . +

(
b

λ

)p

λ(λ− b)−1.

Moreover, if |λ| > r(a) then

(4) (λ− b)−1 =
∞∑

n=0

bn

λn+1

is called the Neumann series of (λ− b)−1.

Theorem 2.1. Let (A,C) be an OBA with C closed and let I be a non-
trivial multiplicative ideal in A. For every a ∈ A there exists 1 6= c ∈ A such
that ac− a ∈ I. If a ∈ C and I ∩C 6= {0} there is 1 6= c ∈ A for which a ≤ ac
with a− ac ∈ I.

Proof. Let a ∈ A. With no positivity, if 0 6= b ∈ I and λ /∈ σ(b) take

c = λ(λ− b)−1

and find ac − a = a(λ − b)−1b ∈ I. If in addition a and b are positive and
r(b) < λ ∈ R, then in view of C being closed and (4) ac− a is positive. �

It is obvious that the applicability lies in the fact that Rad(A), F1 and F
are all multiplicative ideals.

3. The radical

The essential work analyzing the domination problem pertaining to the
property of being a radical element is [8]. Two of their main results are:

Theorem 3.1 [8, Theorem 4.6]. Let (A,C) be an OBA such that the
spectral radius is monotone relative to C and let 0 ≤ a ≤ b w.r.t. C with
b ∈ Rad(A). If C is generating then a ∈ Rad(A).
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Theorem 3.2 [8, Theorem 4.10]. Let (A,C) be an OBA such that the
spectral radius is monotone relative to C and let 0 ≤ a ≤ b w.r.t. C with
b ∈ Rad(A). If span(C) contains an interior point then a ∈ Rad(A).

Note, however, that the proof of Theorem 4.10 in [8] is redundant since it
is rather easy to prove that in an OBA (A,C) span(C) contains an interior
point if and only if the algebra cone C is generating.

In striving to discover other conditions that enforce a positive result to our
domination problem, we consider a polynomial of an element to have a certain
property in the endeavor of showing that the element itself has that property.

Theorem 3.3. Let (A,C) be an OBA such that the spectral radius is
monotone relative to C. Suppose a, b ∈ A such that 0 ≤ a ≤ b w.r.t. C and
b ∈ QN(A). If g(a) ∈ Rad(A) for some polynomial g in a with k ∈ N the
smallest nonzero power of a in g(a), then ak ∈ Rad(A).

Proof. Since the spectral radius is monotone w.r.t. C, 0 ≤ r(a) ≤ r(b).
As b ∈ QN(A), it follows that r(a) = 0, i.e., a ∈ QN(A). This together with
g(a) ∈ Rad(A) and the spectral mapping theorem implies that g(a) can be
written as ak(λk + . . . + λnan−k) with λk, . . . , λn ∈ C and λk 6= 0. Again by
employing the spectral mapping theorem and remembering that a ∈ QN(A)
we obtain σ(λk + . . . + λnan−k) = {λk}. Thus λk + . . . + λnan−k is invertible
in A and so

ak = g(a)(λk + . . . + λnan−k)−1 ∈ Rad(A). �

Corollary 3.4. Let (A,C) be an OBA such that the spectral radius is
monotone relative to C. Suppose a, b ∈ A such that 0 ≤ a ≤ b w.r.t. C and
b ∈ QN(A). If a + a2 ∈ Rad(A), then a ∈ Rad(A).

4. Inessential elements

In [12, Theorem 6.2] it is shown that under some natural imposed con-
ditions, a positive element a is Riesz relative to a closed ideal F when it is
dominated by an element b that is Riesz relative to F . We pose the question:
Is this the case when we work with inessential elements? We will demonstrate
that under some natural imposed conditions this is true.

Theorem 4.1. Let (A,C) be an OBA and F a closed ideal in A. Suppose
a, b ∈ A with 0 ≤ a ≤ b relative to C and b inessential relative to F . Let the
spectral radius in the OBA (A/F, πC) be monotone.

(i) Then a is Riesz relative to F .
(ii) If a is in the center of A then a is inessential relative to F .
(iii) If the algebra cone C is generating then a is inessential relative to F .

Proof. (i) This follows from the fact that b is Riesz relative to F and that
the spectral radius in the quotient algebra (A/F, πC) is monotone.
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(ii) This follows from [12, Theorem 4.1 4].
(iii) Since C is generating in A, πC is generating in the quotient algebra

A/F . Employing Theorem 3.1, we obtain a + F ∈ Rad(A/F ). �

In view of [12, Theorem 6.1] and Theorem 4.1 we have:

Corollary 4.2. Let (A,C) be an OBA and F a closed ideal in A. Sup-
pose the spectral radius in the OBA (A/F, πC) is monotone and the algebra
cone C is generating. Then the algebra cone C +kh(F ) in the quotient algebra
(A/kh(F ), C + kh(F )) is proper.

Corollary 4.3. Let (A,C) be an OBA and F a closed ideal in A such
that kh(F ) is a proper ideal in A. Suppose a, b ∈ A with 0 ≤ a ≤ b and b
is inessential relative to F . If the spectral radius in the OBA (A/F, πC) is
monotone and C is generating, then a cannot be invertible.

Proof. In view of (iii) and the fact that a proper ideal cannot contain
invertible elements this is clear. �

In [12] the solution to the domination problem in the setting of Riesz ele-
ments, namely [12, Theorem 6.2], is illustrated in the setting of C∗-algebras,
[12, Proposition 6.4 and Theorem 6.5]. These results can be adapted in the
setting of inessential elements to illustrate Theorem 4.1.

Proposition 4.4. Let A be a commutative C∗-algebra with

C = {x ∈ A | x = x∗ and σ(x,A) ⊂ [0,∞]}

and a, b ∈ A such that 0 ≤ a ≤ b w.r.t. C. If F is a closed ideal of A such
that b is inessential relative to F , then a is inessential relative to F .

The adaption of [12, Theorem 6.5] to the setting of inessential elements is
not straightforward since unlike in the case of Riesz elements, if B is a closed
subalgebra of A with 1 ∈ B ⊂ A and I is a closed inessential ideal in A then
in general it is not the case that kh(A, I)∩B = kh(B, I ∩B). Nonetheless, it
can be shown that

kh(A, I) ∩B ⊂ kh(B, I ∩B).

However, in view of an inessential element relative to an inessential ideal being
Riesz relative to the inessential ideal and [12, Theorem 6.5] we have:

Corollary 4.5. Let A be a C∗-algebra with

C = {x ∈ A | x = x∗ and σ(x,A) ⊂ [0,∞]}

and a, b ∈ A such that ab = ba and 0 ≤ a ≤ b w.r.t. C. If F is a closed ideal
of A such that b is inessential relative to F , then a is Riesz relative to F .
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If in the above corollary we replace the condition ab = ba with A/F be-
ing commutative, then it follows that if b is inessential relative to F then a
is inessential relative to F . In view of the remark following Corollary 3.4,
Theorem 3.3 in the setting of inessential elements takes the following form:

Theorem 4.6. Let (A,C) be an OBA and F a closed ideal in A such
that the spectral radius relative to πC in (A/F, πC) is monotone. Let a, b ∈ A
such that 0 ≤ a ≤ b relative to C and let b be Riesz relative to F . If g(a) is
inessential relative to F for some polynomial g in a with k ∈ N the smallest
nonzero power of a in g(a), then ak is inessential relative to F .

5. Rank one and finite elements

In this section we investigate the domination problem in the setting of rank
one and finite elements. We provide examples where the domination problem
holds and examples where it does not hold.

Example 5.1. Let K be a completely regular Hausdorff space and let
Cb(K) be the Banach algebra of all complex valued bounded continuous func-
tions on K with the supremum norm. It is noted by J. Puhl [10, p. 658] that
the rank one elements are of the form:

δs(t) =

{
β if t = s,
0 if t 6= s,

where β ∈ C is fixed and s is an isolated point of K. The cone C = {f ∈
Cb(K) | f(k) ≥ 0 for all k ∈ K} is normal. Moreover, if we let 0 ≤ f ≤ g
w.r.t. C then it is obvious that if g is rank one then so is f . �

A counter example to the domination problem in the context of rank one
elements comes in the form of the matrix algebras.

Example 5.2. Let M2×2 denote the Banach algebra of all complex 2× 2
matrices with standard addition, multiplication and norm. Together with
the normal algebra cone C of all 2 × 2 matrices with positive real entries,
(M2×2, C) forms an OBA. Because M2×2 is semisimple it is semiprime. A
simple argument shows that in general a rank one element cannot be invertible.
In this OBA the converse is also true (this is not normally the case). Thus,
the rank one elements coincide with the non invertible matrices.

When we consider

A =
(

1 0
1 1

)
and B =

(
1 1
1 1

)
it is easy to see that 0 ≤ A ≤ B with B rank one and A invertible and hence
not rank one.
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It is a simple exercise to extend this to the n × n case for n ∈ N. By
choosing

B =

1 · · · 1
...

. . .
...

1 · · · 1

 and A =


1 · · · 1 0
1 · · · 1 1
...

. . .
...

...
1 · · · 1 1


we find 0 ≤ A ≤ B with B rank one and A not. �

We provide another counter example to the domination problem. It is
taken from [1], and adapted for our situation.

Example 5.3. Let E denote the Banach lattice of bounded linear opera-
tors from `1 to `∞. Let S, T ∈ E be defined by Sx = x and Tx = (

∑∞
n=1 xn)·e

for x = (xn) and e the constant sequence 1. Then 0 ≤ S ≤ T and it is clear
that T is a rank one operator while S is not. Let G = `1 ⊕ `∞ and L(G)
denote the Banach algebra of bounded linear operators on G. If

A =
(

0 0
S 0

)
and B =

(
0 0
T 0

)
then A,B ∈ L(G) with 0 ≤ A ≤ B, B rank one and A not finite rank. �

Although Examples 5.2 and 5.3 are counter examples to the domination
problem, we can nonetheless in view of (1) ascertain the following:

Theorem 5.4. Let (A,C) be an OBA with A semiprime such the spectral
radius relative to πC in the OBA (A/F̄ , πC) is monotone. Suppose 0 ≤ a ≤ b
in A w.r.t. C with b a finite element in A.

(i) If C is generating then a is inessential relative to F .
(ii) If a is in the center of A then a is inessential relative to F .

In either of these cases if A/F̄ is semisimple, a ∈ F̄ .

The proof follows directly from the proof of Theorem 4.1 if we take the
closed ideal F to be the ideal F̄ .

In [4, Theorem 2.10] it is shown that in a semiprime Banach algebra that
is not semisimple,

(5) F̄1 ∩ RadA = {0} and F̄1 · RadA = {0} = RadA · F̄1.

Using the second fact and noting that every finite element is a finite sum of
rank one elements yields

(6) F · RadA = RadA · F = {0}.

These comments prompt us to consider the following:
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Theorem 5.5. Let (A,C) be an OBA with A semiprime but not semisim-
ple and let the algebra cone C be proper. Suppose that a, b ∈ A such that
0 ≤ a ≤ b w.r.t. C.

(i) If b is a finite element and a ∈ RadA then a2 = 0.
(ii) If b ∈ RadA and a is a finite element then a2 = 0.
(iii) If C is generating, the spectral radius is monotone relative to C, b ∈

RadA and a is rank one then a = 0.

Proof. (i) If 0 ≤ a ≤ b in A with b a finite element and a ∈ RadA then in
view of C being an algebra cone, 0 ≤ a2 ≤ ab. By (6) ab = 0 and C being
proper implies a2 = 0.

(ii) Follows that of (i).
(iii) By Theorem 3.1 and (5) this is apparent. �

Theorem 5.6. Let (A,C) be an OBA with A semiprime and C proper.
Suppose b ≥ 0 is a finite element and C ∩ RadA 6= {0}. Then there does not
exist an invertible a such that 0 ≤ a ≤ b.

Proof. Let 0 6= c ∈ C ∩ RadA. Suppose there exists an invertible a with
0 ≤ a ≤ b. In view of C being an algebra cone and (6), 0 ≤ ac ≤ 0. As C is
proper we obtain ac = 0. This is impossible as the invertibility of a implies
c = 0. �

Corollary 5.7. Let (A,C) be an OBA with A semiprime and C proper.
If C ∩ RadA 6= {0} there does not exist finite elements b in A such that
0 ≤ 1 ≤ b.

6. r-inessential operators

Let E be a Banach lattice and suppose operators S and T on E satisfy
0 ≤ S ≤ T . From this we can deduce that σ(S,L(E)) ⊂ B(0, r(T )). In this
section we are going to illustrate the results in the previous section in the
context of operators on Banach lattices. The domination problem mentioned
earlier takes the form: If E is a Dedekind complete Banach lattice and if S
and T are operators on E such that 0 ≤ S ≤ T , then is S r-inessential when
T is r-inessential? In view of (2) and [12, Corollary 6.3] we can deduce at
least that S is r-asymptotically quasi finite rank. In view of Kr(E) being an
inessential ideal in Lr(E) this means by [3, Corollary 5.7.5] that the spectrum
of S is either a finite set or a sequence converging to zero. However, we can
improve on this:

Theorem 6.1. Let E be a Dedekind complete Banach lattice and suppose
S and T are operators on E satisfying 0 ≤ S ≤ T . If T is r-inessential then
S is r-inessential.
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Proof. Since the algebra cone C = {T ∈ L(E) | Tx ≥ 0 if 0 ≤ x ∈ E} in
the Banach algebra Lr(E) is generating, the algebra cone C + Kr(E) in the
OBA Lr(E)/Kr(E) is generating. In view of the spectral radius in the OBA
Lr(E)/Kr(E) being monotone [5, Theorem 2.8] and Theorem 3.1 we deduce
that S+Kr(E) ∈ Rad(Lr(E)/Kr(E)) if T +Kr(E) ∈ Rad(Lr(E)/Kr(E)). �

Suppose positive operators S and T on a Dedekind complete Banach lattice
satisfy 0 ≤ S ≤ T . If T is either rank one, finite rank or an r-compact
operator, then in general the operator S is not finite rank or r-compact; see
Examples 5.2 and 5.3 and [5, Lemma 2.7]. By [5, Lemma 2.7] the element
S + Kr(E) is nilpotent in the algebra Lr(E)/Kr(E). However, by Theorem
6.1 the operator S is r-inessential. By imposing conditions on the operator S
or on the space E we can deduce more.

Corollary 6.2. Let E be a Dedekind complete Banach lattice and sup-
pose S and T are operators on E satisfying 0 ≤ S ≤ T . Suppose T is a finite
rank or r-compact operator on E. If S is a projection then S is a finite rank
operator.

Proof. If T is a finite rank or an r-compact operator on E then by Theorem
6.1 S is r-inessential. This together with S + Kr(E) being an idempotent in
Lr(E)/Kr(E) implies that S ∈ Kr(E). Hence S is a compact projection and
so a finite rank operator. �

Note that one can also prove Corollary 6.2 by employing [5, Lemma 2.7].

Corollary 6.3. Let E be a Dedekind complete Banach lattice and sup-
pose S and T are operators on E satisfying 0 ≤ S ≤ T . Suppose T is a finite
rank or r-compact operator on E. If S + Kr(E) is a finite element in the
algebra Lr(E)/Kr(E) then S is r-compact.

Proof. If T is a finite rank or an r-compact operator on E then by Theorem
6.1 S is r-inessential. This together with S +Kr(E) being a finite element in
Lr(E)/Kr(E) and [6, Lemma 4(i)] gives S ∈ Kr(E). �

If in Corollary 6.3 E is a Dedekind complete Banach lattice such that
Lr(E)/Kr(E) has finite dimensional radical then S+Kr(E) is a finite element
in Lr(E)/Kr(E).

Acknowledgement. The authors would like to thank the referee for some
helpful suggestions.
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