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BOUNDARIES FOR ALGEBRAS OF HOLOMORPHIC
FUNCTIONS ON BANACH SPACES

YUN SUNG CHOI, KWANG HEE HAN, AND HAN JU LEE

Abstract. We study the relations between boundaries for algebras of
holomorphic functions on Banach spaces and complex convexity of their
balls. In addition, we show that the Shilov boundary for algebras of
holomorphic functions on an order continuous sequence space X is the
unit sphere SX if X is locally c-convex. In particular, it is shown that
the unit sphere of the Orlicz-Lorentz sequence space λϕ,w is the Shilov
boundary for algebras of holomorphic functions on λϕ,w if ϕ satisfies
the δ2-condition.

1. Introduction and preliminaries

Let X be a complex Banach space and let BX be the closed unit ball of
X. We denote by H(BX) the set of all holomorphic functions on the interior
of BX , and by Cb(BX) the Banach algebra of bounded continuous functions
on BX with the sup norm.

Globevnik [10] defined and studied the following analogues of the classical
disc algebra:

Ab(BX) = {f ∈ H(BX) : f ∈ Cb(BX)} ,
Au(BX) = {f ∈ Ab(BX) : f is uniformly continuous on BX} .

It is shown in [3] that Au(BX) is a proper subset of Ab(BX) if and only if
X is an infinite dimensional Banach space. Then it is easy to see that both
Ab(BX) and Au(BX) are Banach algebras when given the natural norm

‖f‖ = sup{|f(x)| : x ∈ BX}.
Let K be a Hausdorff topological space and A a closed function algebra

on K, that is, a closed subalgebra of Cb(K). A subset F of K is called a
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boundary for A if for all f ∈ A we have

‖f‖ = sup
x∈F

|f(x)|.

If the intersection of all closed boundaries for A is again a boundary for A,
then it is called the Shilov boundary for A, denoted by ∂A. We recall that a
function algebra A is said to be separating if (i) for two distinct points x, y
in K, there is an element f ∈ A such that f(x) 6= f(y) and (ii) for each
t ∈ K there is an f ∈ A such that f(t) 6= 0. A uniform algebra on a compact
Hausdorff space K is a closed function algebra which contains constants and
separates the points of K.

Given a closed function algebra A on a metric space K, a set S ⊂ K is
called a peak set for A if there exists f ∈ A such that f(S) = 1, |f(x)| <
1 (x ∈ K \ S). A set S ⊂ K is called a strong peak set for A if there exists
f ∈ A such that f(S) = 1 and for every ε > 0 there exists δ > 0 with
|f(x)| < 1− δ whenever dist(x, S) > ε. If S consists of only one point p and if
it is a peak set (resp. strong peak set) for A, then the point p is called a peak
point (resp. strong peak point) for A.

The set of all peak points for A is called the Bishop boundary for A and
denoted by ρA. Note that if K is compact, then a peak point x ∈ K for A is
also a strong peak point for A; hence every closed boundary for A contains
ρA. Further, Bishop [4, Theorem 1] showed that for any uniform algebra A
on a compact metrizable space K,

∂A = ρA.
Given a convex set M ⊂ X, a point x ∈M is called a real (resp. complex )

extreme point of M if for every nonzero y ∈ X, there is a real (resp. complex)
number ζ such that |ζ| ≤ 1 and x+ζy /∈M . The set of all real (resp. complex)
extreme points of M is denoted by ExtR(M) (resp. ExtC(M)). Let A be a
uniform algebra on a compact Hausdorff space K. Let A∗ be the dual Banach
space of A and let S∗1 be the intersection of the unit sphere SA∗ of A∗ with the
hyperplane {x∗ ∈ A∗ : x∗(1) = 1}. The set χA = {x ∈ K : δx ∈ ExtR(S∗1 )} is
called the Choquet boundary for A.

It is well-known (see [15, Theorem 9.7.2]) that if A is a uniform algebra on
a compact metrizable space K, then

(1.1) ρA = χA.
Given a convex compact subset K in a complex locally convex space E,

Arenson [1] considered the uniform algebra P(K) generated by the constants
and restrictions to K of functions from E∗, and showed that

(1.2) χP(K) = ExtC(K).

In particular, if K is metrizable, we have

(1.3) ρP(K) = χP(K) = ExtC(K).
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On the other hand, it is shown in [10] that ρAb(BX) ⊂ ExtC(BX). We also
note that every closed boundary for a function algebra A must contain the
set of all strong peak points for A.

When X is finite dimensional, we get the following observation from the
above remark and the inclusion ρP(BX) ⊂ ρAb(BX).

Proposition 1.1. If X is finite dimensional, then

ρP(BX) = χP(BX) = ExtC(BX) = ρAb(BX),

and
∂Ab(BX) = ExtC(BX).

The following two observations are easy.

Proposition 1.2. Let X be a Banach space and suppose that the set of
all strong peak points for Au(BX) is dense in the unit sphere SX . Then the
unit sphere is the Shilov boundary for both Au(BX) and Ab(BX).

Proposition 1.3. Let X be a Banach space and suppose that the unit
sphere SX is the Shilov boundary for Au(BX). Then a subset F of BX is a
boundary for Au(BX) if and only if it is a boundary for Ab(BX).

For each x ∈ BX , we define the face at x as the set

F(x) =

{
x+ y : y ∈ X, sup

|ζ|≤1

‖x+ ζy‖ ≤ 1

}
.

Notice that x ∈ SX is a complex extreme point of BX if and only if F(x) =
{x}. A Banach space X is said to be strictly c-convex if every point of SX is
a complex extreme point.

By the maximum modulus theorem, we obtain the following result:

Proposition 1.4. Let S be a peak set for Ab(BX). Then for each x ∈ S,
F(x) is contained in S.

This shows that every peak point for Ab(BX) is a complex extreme point
of BX , which is Theorem 4 in [9].

A point x ∈ SX is said to have a strong face if for each ε > 0, there is
δ(ε) > 0 such that if dist(F(x), y) ≥ ε, then

sup
0≤θ≤2π

‖x+ eiθ(x− y)‖ ≥ 1 + δ(ε).

A Banach space X is said to be locally c-convex if it is strictly c-convex
and every point of the unit sphere SX has a strong face. The maximum
modulus theorem shows that if two elements x, y in a Banach space satisfy
sup0≤θ≤2π ‖x+ eiθy‖ ≤M , then max{‖x‖, ‖y‖} ≤M .
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Proposition 1.5. Suppose that X is a finite dimensional Banach space.
Then every point of SX has a strong face.

Proof. Suppose otherwise. Then there exist x ∈ SX , ε > 0, and a sequence
{yn} in X such that dist(F(x), yn) ≥ ε for each n, but

lim
n→∞

sup
0≤θ≤2π

‖x+ eiθ(x− yn)‖ = 1.

So we get
M := sup

n∈N
sup

0≤θ≤2π
‖x+ eiθ(x− yn)‖ <∞.

Hence supn ‖x− yn‖ ≤ M . So we may assume that yn converges to y. Then
dist(F(x), y) ≥ ε. For each θ ∈ R,

‖x+ eiθ(x− y)‖ ≤ ‖x+ eiθ(x− yn)‖+ ‖yn − y‖.
This shows that

sup
0≤θ≤2π

‖x+ eiθ(x− y)‖ ≤ lim
n

sup
0≤θ≤2π

‖x+ eiθ(x− yn)‖ = 1.

Therefore, y = x+ (y − x) ∈ F(x), which contradicts dist(F(x), y) ≥ ε. �

The modulus of complex convexity of a complex Banach space X is defined
by

HX(ε) = inf
{

sup
0≤θ≤2π

‖x+ eiθy‖ − 1 : x ∈ SX , ‖y‖ ≥ ε

}
for each ε > 0. A complex Banach space X is said to be uniformly c-convex
if HX(ε) > 0 for all ε > 0. If X is uniformly c-convex, then every point in SX
has a strong face. A finite dimensional strictly c-convex space is uniformly
c-convex.

A sequence x = {x(k)} is said to be positive if x(k) ≥ 0 for each k ∈ N.
We define a partial order x ≥ y if x − y is positive. The absolute value of
x is defined to be |x| = {|x(k)|}. A Banach sequence space (X, ‖ · ‖) is a
Banach space consisting of sequences satisfying the following property: if x
is a sequence with |x| ≤ |y| for some y ∈ X, then x ∈ X and ‖x‖ ≤ ‖y‖. A
Banach sequence space is said to be order continuous if any sequence {xn} in
X satisfying

0 ≤ x1 ≤ x2 ≤ · · · ≤ y for some positive y ∈ X,
is norm-convergent. The vector ej is defined to have 1 in the j-th component
and zeros in all other components. Note that if a Banach sequence space X
is order continuous, then {en} is a basis of X.

It is known from [16], [17] that a uniformly c-convex sequence space is order
continuous.

A Banach sequence space X is said to be strictly monotone if for every pair
y ≥ x ≥ 0 with y 6= x, we have ‖y‖ > ‖x‖. Recall also that a Banach sequence
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space X is said to be lower (resp. upper) locally uniformly monotone if for
any positive x ∈ SX and any 0 < ε < 1 (resp. ε > 0) there is δ = δ(ε, x) > 0
such that the condition 0 ≤ y ≤ x (resp. y ≥ 0) and ‖y‖ ≥ ε implies

‖x− y‖ < 1− δ (resp. ‖x+ y‖ ≥ 1 + δ).

A Banach sequence space X is said to be uniformly monotone if given ε > 0,
there is δ(ε) > 0 such that

inf{‖ |x|+ |y| ‖ : ‖y‖ ≥ ε, x ∈ SX} ≥ 1 + δ.

A uniformly monotone Banach sequence space is both lower and upper locally
uniformly monotone.

It is shown in [8, Theorem 1] that a Banach sequence space is lower locally
uniformly monotone if and only if it is strictly monotone and order continuous.
It is also shown in [12], [16], [17] that a Banach sequence space is strictly (resp.
uniformly) monotone if and only if it is strictly (resp. uniformly) c-convex.

2. Boundaries of Au(BX) and Ab(BX)

Proposition 2.1. Suppose that X is a complex Banach space. Let F
be a boundary for Au(BX) and let P be a norm-one projection with a finite
dimensional range Y . Then

ExtC(BY ) ⊂ P (F ).

Proof. Suppose x0 ∈ ExtC(BY )\P (F ). Then there exists ε0 > 0 such that
‖P (x)−x0‖ ≥ ε0 for every x ∈ F . By Proposition 1.1 x0 is a strong peak point
for the algebra Au(BY ), that is, there is a g ∈ Au(BY ) such that g(x0) = 1
and to every ε > 0 corresponds a δ(ε) > 0 satisfying

|g(y)| < 1− δ(ε),

for all y ∈ BY with ‖y− x0‖ ≥ ε. Take f = g ◦P ∈ Au(BX). Then f(x0) = 1
and for every x ∈ F we have

|f(x)| = |g(P (x))| < 1− δ(ε0).

This contradicts the fact that F is a boundary of Au(BX). �

Proposition 2.2. Suppose that X is a complex Banach space with the
following properties: There is a collection {Pα}α∈A of projections Pα with
finite dimensional ranges Yα such that

⋃
α∈A Yα is dense in X, and for each

α ∈ A
sup

0≤θ≤2π
‖Pα + eiθ(I − Pα)‖ ≤ 1.

Then a set F ⊂ BX is a boundary for Au(BX) if

ExtC(BYα) ⊂ Pα(F )

for every α ∈ A.
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Proof. Suppose that F is not a boundary for Au(BX). Then there are
f ∈ Au(BX), ‖f‖ = 1, and ε > 0 such that |f(x)| < 1 − ε for every x ∈ F .
ρAu(BY ) is a boundary forAu(BY ) if Y is finite dimensional. Since

⋃
α∈ABYα

is dense in BX , it follows from Proposition 1.1 that

‖f‖ = sup
x∈

S
α SYα

|f(x)| = sup
x∈

S
α ρAu(BYα )

|f(x)| = sup
x∈

S
α ExtC(BYα )

|f(x)|.

Hence there is a sequence {xn} such that

xn ∈
⋃
α

ExtC(BYα), and lim
n
|f(xn)| = 1.

Because f is continuous and ExtC(BYα) ⊂ Pα(F ) for every α ∈ A, there is
a sequence {un} such that

{un} ⊂
⋃
α

Pα(F ), and lim
n
|f(un)| = 1.

Each un has the form un = Pαnzn, where zn ∈ F . Set vn = (I − Pαn)zn, and
zn = un + vn. By the uniform continuity of f there exists δ, 0 < δ < 1, such
that if ‖x1−x2‖X ≤ δ and x1, x2 ∈ BX , then |f(x1)− f(x2)| < ε/2. Thus we
get for every n ∈ N,

|f(un + (1− δ)vn)− f(un + vn)| <
ε

2
.

Further, since zn = un + vn ∈ F , we have |f(un + vn)| < 1 − ε, and
consequently for each n ∈ N,

(2.1) |f(un + (1− δ)vn)| < 1− ε

2
.

On the other hand, since

‖Pαn + eiθ(I − Pαn)‖ ≤ 1

for every θ ∈ R, the maximum modulus theorem shows that for every ζ ∈ C
with |ζ| ≤ 1, ∥∥∥∥un +

1
1− δ

ζ[(1− δ)vn]
∥∥∥∥ ≤ 1.

By [10, Lemma 1.4], there is C(ε) <∞ such that for each n ∈ N,

|f(un + (1− δ)vn)− f(un)| < C(ε)(1− |f(un)|).

Since limn |f(un)| = 1, it follows that limn |f(un + (1 − δ)vn)| = 1, which
contradicts (2.1). �

Corollary 2.3. Suppose that X is a complex Banach space with a se-
quence {Pn} of projections with the same properties as in Proposition 2.2.
Then a set F ⊂ BX is a boundary for Au(BX) if and only if the closure of
Pn(F ) contains ExtC(BYn) for every positive integer n.
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We remark that an order continuous Banach sequence space has the prop-
erties outlined in Proposition 2.2.

Corollary 2.4. Let X be an order continuous Banach sequence space.
Let F ⊂ SX and let Pn be a sequence of coordinate projections with finite
dimensional range Yn such that every finite subset of N is contained in the
support of some Pn. If ExtC(BYn) ⊂ Pn(F ) for each n ∈ N, then F is a
boundary for Au(BX).

Corollary 2.4 extends Theorem 1.5 in [10].

Proposition 2.5. Suppose that there is a family {Yα}α∈A of finite di-
mensional subspaces of a Banach space X such that

⋃
αBYα is dense in BX .

Then the set F =
⋃
α ExtC(BYα) is a boundary for Ab(BX).

3. Shilov boundary for Au(BX) and Ab(BX)

Proposition 3.1. Suppose that x0 ∈ SX has a strong face and T is a
bounded operator of X into X with Tx0 = x0 and

sup
0≤θ≤2π

‖T + eiθ(I − T )‖ ≤ 1.

Then for each ε > 0, there is δ(ε) > 0 such that whenever dist(F (x0), y) ≥ ε
and y ∈ BX , we get

‖x0 − Ty‖ ≥ δ(ε).

Proof. Suppose, on the contrary, that there is ε0 > 0 such that

inf{‖x0 − Ty‖ : dist(F (x0), y) ≥ ε0, y ∈ BX} = 0.

Then there is a sequence {sn} in BX such that dist(F (x0), sn) ≥ ε0 and

lim
n→∞

Tsn = x0.

Since x0 has a strong face, there are δ1 > 0 and θn ∈ R such that for every n
we have

‖x0 + eiθn(sn − x0)‖ ≥ 1 + δ1.

So

1 + δ1 ≤ ‖x0 + eiθn(sn − x0)‖

≤ ‖Tsn + eiθn(sn − x0)‖+ ‖x0 − Tsn‖

≤ ‖Tsn + eiθn(I − T )sn)‖+ 2‖x0 − Tsn‖.

This implies that

1 + δ1 ≤ lim sup
n→∞

‖Tsn + eiθn(I − T )sn)‖ ≤ 1,

which is a contradiction. �
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Proposition 3.2. Let X be a complex Banach space and let P be a pro-
jection of X onto a finite dimensional subspace Y such that

sup
0≤θ≤2π

‖P + eiθ(I − P )‖ ≤ 1.

If x0 ∈ ExtC(BY ) and x0 has a strong face in X, then F(x0) is a strong peak
set for Au(BX).

Proof. By Proposition 1.1, x0 is a strong peak point for Ab(BY ) since Y
is finite dimensional. Hence there is a peak function g ∈ Ab(BY ) such that
g(x0) = 1 and for each ε > 0 there is δ̃(ε) > 0 such that for every ‖x0−y‖ ≥ ε
and y ∈ BY , we have

|g(y)| < 1− δ̃(ε).
By Proposition 3.1 we get δ(ε) > 0 such that if dist(F(x0), y) ≥ ε

‖x0 − Py‖ ≥ δ(ε).

Take f = g◦P . Then f ∈ Au(BX) and for each z ∈ BX with dist(F(x0), z) ≥
ε, we have f(F(x0)) = 1 by the maximum modulus theorem and |f(z)| <
1− δ̃(δ(ε)). This implies that F(x0) is a strong peak set for Au(BX). �

Every element x in the torus in c0 has a strong face F(x) and hence F(x)
is a strong peak set for Au(BX). The following result generalizes Theorem 1.9
in [10].

Proposition 3.3. Let X be a complex Banach space as in Proposition
2.2. Suppose that every point of

⋃
α ExtC(BYα) has a strong face in X. Then

F ⊂ BX is a boundary for Au(BX) if and only if dist(F, S) = 0 for each
strong peak set S for Au(BX).

Proof. The necessity is clear. Conversely, suppose that there is a subset
F ⊂ BX such that dist(F, S) = 0 for each strong peak set S for Au(BX).
We shall show that for each α the closure of Pα(F ) contains ExtC(BYα). By
applying Proposition 2.2, we get the desired result.

Now, let x0 ∈ ExtC(BYα). By Proposition 3.2, its face F(x0) is a strong
peak set for Au(BX). Hence dist(F,F(x0)) = 0. Then there are sequences
{x0 + yk}k in F(x0) and {zk}k in F such that

(3.1) lim
k→∞

‖(x0 + yk)− zk‖ = 0.

Since x0 + yk is in F(x0) and ‖Pα‖ = 1, we have for each real θ,

‖x0 + eiθPα(yk)‖ ≤ ‖x0 + eiθyk‖ ≤ 1.

Since x0 is a complex extreme point of BYα , Pα(yk) = 0, and so (3.1) shows
that

lim sup
k→∞

‖x0 − Pα(zk)‖ ≤ lim sup
k→∞

‖(x0 + yk)− zk‖ = 0.

Therefore x0 is in the closure of Pα(F ). �
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In the proof of Proposition 3.3, for F ⊂ BX to be a boundary for Au(BX)
it is sufficient that dist(F,F(x)) = 0 holds for every x ∈

⋃
α ExtC(BYα).

Corollary 3.4. Let X be a locally c-convex sequence space. Suppose that
x0 ∈ SX is finitely supported. Then x0 is a strong peak point for Au(BX).
In particular, if in addition X is order continuous, then the set of all strong
peak points for Au(BX) is dense in SX .

Proof. Suppose that Y = span{e1, . . . , en} contains x0. Hence x0 is a
complex extreme point of BY . Let P : X → Y be the projection defined by

P (x(1), x(2), . . .) = (x(1), x(2), . . . , x(n), 0, 0, . . .).

Clearly ‖P + eiθ(I − P )‖ ≤ 1 for all θ ∈ R. By Proposition 3.2, x0 is a
strong peak point for Au(BX). Notice that if a Banach sequence space is
order continuous, then the set of all finitely supported elements in X is dense
in X. �

Proposition 1.2 and Corollary 3.4 show the following theorem.

Theorem 3.5. Let X be an order continuous locally c-convex Banach
space. Then SX is the Shilov boundary for both Au(BX) and Ab(BX).

By [16], [17], every uniformly c-convex sequence space is order continuous.

Proposition 3.6. A Banach sequence space X is upper locally uniformly
monotone if and only if it is locally c-convex.

Proof. Suppose X is locally c-convex. Then for each positive x ∈ SX and
ε > 0 there is δ = δ(x, ε) > 0 such that for all z ∈ X with ‖z‖ ≥ ε

sup
0≤θ≤2π

‖x+ eiθz‖ ≥ 1 + δ.

Hence we have for every y ≥ 0 with ‖y‖ ≥ ε,

‖x+ y‖ ≥ inf
{

sup
0≤θ≤2π

‖x+ eiθz‖ : ‖z‖ ≥ ε

}
≥ 1 + δ.

So X is upper locally uniformly monotone.
Conversely, suppose that X is upper locally uniformly monotone. If x, y ∈

X, then by [7, Theorem 7.1],

sup
0≤θ≤2π

‖x+ eiθy‖ ≥ 1
2π

∫ 2π

0

‖x+ eiθy‖dθ ≥

∥∥∥∥∥
(
|x|2 +

1
2
|y|2

)1/2
∥∥∥∥∥ .

By Lemma 2.3 in [16], for every nonzero pair x, y in X, there exist δ1 =
δ1(‖x‖, ‖y‖) > 0 and z ∈ X with 0 ≤ z ≤ |y| and ‖z‖ ≥ ‖y‖/2 such that the
following holds:

‖(|x|2 + |y|2)1/2‖ ≥ ‖ |x|+ δ1|z| ‖.
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Hence for every x ∈ SX and ε > 0, we get

inf
{

sup
0≤θ≤2π

‖x+ eiθy‖ : ‖y‖ ≥ ε

}
≥ inf

{
‖ |x|+ |y| ‖ : ‖y‖ ≥ ε

2
√

2
δ1

(
1,

ε√
2

)}
.

Hence the upper local uniform monotonicity implies the local c-convexity. The
proof is complete. �

A function ϕ : R → [0,∞] is said to be an Orlicz function if ϕ is even,
convex, continuous, and vanishing only at zero. Let w = {w(n)} be a weight
sequence, that is, a non-increasing sequence of positive real numbers satisfying∑∞
n=1 w(n) = ∞. Given a sequence x, x∗ is the decreasing rearrangement of

|x|.
The Orlicz-Lorentz sequence space λϕ,w consists of all sequences x =

{x(n)} such that for some λ > 0,

%ϕ(λx) =
∞∑
n=1

ϕ(λx∗(n))w(n) <∞,

and equipped with the norm ‖x‖ = inf{λ > 0 : %ϕ(x/λ) ≤ 1}, λϕ,w is a
Banach space. We say an Orlicz function ϕ satisfies the condition δ2 (ϕ ∈ δ2)
if there exist K > 0, u0 > 0, such that ϕ(u0) > 0 and the inequality

ϕ(2u) ≤ Kϕ(u)

holds for u ∈ [0, u0].
It was proved in [8, Corollary 4] that the Orlicz-Lorentz sequence space λϕ,w

is strictly monotone if and only if it is both upper and lower locally uniformly
monotone. There it was also shown that the strict monotonicity of λϕ,w is
equivalent to the fact that ϕ ∈ δ2. In this case, the Orlicz-Lorentz sequence
space λϕ,w is locally c-convex by Proposition 3.6 and order continuous by
Theorem 2 and Corollary 4 of [8]. If ϕ(u) = |u|p for some 1 ≤ p < ∞
and if w ≡ 1, then λϕ,w = `p. Hence we obtain the following corollary by
Theorem 3.5, which extends a result in [2].

Corollary 3.7. Given an Orlicz function ϕ ∈ δ2 and a weight sequence
w,

∂Au(Bλϕ,w) = ∂Ab(Bλϕ,w) = Sλϕ,w .

4. Boundaries for Ab(BX)

Recall that a Banach sequence space X is called rearrangement invariant if
y ∈ X and ‖y‖ = ‖x‖ whenever y is a sequence with y∗ = x∗ for some x ∈ X.
Let X be a rearrangement invariant Banach sequence space. Given any finite
subset M of natural numbers, let φ : N → N \M be the order preserving
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bijection and let PM be the isometry from {x ∈ X : supp(x) ∩M = ∅} onto
X given by

PM (x) =
∞∑
i=1

〈x, eφ(i)〉ei,

where the sum is a formal series and supp(x) = {k ∈ N : x(k) 6= 0}. If
supp(x) is finite, x is called a finite vector. Now assume that X has the
following additional property:

For each finite vector x ∈ BX , there exist ε = ε(x) > 0 such that for all
y ∈ BX with supp(x) ∩ supp(y) = ∅,

(4.1) ‖x+ εy‖ ≤ 1.

For each finite vector x ∈ SX , let η(x) > 0 be the supremum of the set of all
ε > 0 satisfying (4.1). Observe that η(x) ≤ 1 and

F(x) ⊃ {x+ η(x)y : y ∈ BX , supp(x) ∩ supp(y) = ∅}.

If X is a rearrangement invariant Banach sequence space satisfying the
property (4.1) and if x ∈ ExtC(BF ), where F is the subspace spanned by a
finite number of {ek}k, then for all y ∈ X with x+ y ∈ F(x), we have

supp(x) ∩ supp(y) = ∅, and ‖x+ η(x)y‖ ≤ 1.

Let S ⊂ BX and let F be the subspace spanned by a finite number of
{ek}k. Given x ∈ BF we define

S(x) = {Psupp(x)(y) : y ∈ BX , x+ η(x)y ∈ S, supp(x) ∩ supp(y) = ∅}.

Put, for each 0 < ε < 1,

C(S, ε) = sup{|f(0)| : f ∈ Ab(BX), ‖f‖ ≤ 1, |f(z)| < 1− ε for all z ∈ S}.

Then S is called a 0-boundary for Ab(BX) if C(S, ε) < 1 for every ε > 0. A
family {Sγ}γ∈Γ of subsets of BX is called a uniform family of 0-boundaries
for Ab(BX) if supγ∈Γ C(Sγ , ε) < 1 for every ε > 0.

Theorem 4.1. Let X be a rearrangement invariant Banach sequence space
satisfying property (4.1) and let V be a boundary for Ab(BX) consisting of
norm-one finite vectors. Assume also that S ⊂ BX has the property that
{S(x)}x∈V is a uniform family of 0-boundaries for Ab(BX). Then S is a
boundary for Ab(BX).

Proof. Suppose S is not a boundary forAb(BX). Then there is f ∈ Ab(BX)
with ‖f‖ = 1 and 0 < δ < 1 such that |f(z)| < 1 − δ for all z ∈ S. The
assumption on V implies that there exists a sequence {xn}∞n=1 in V such that

lim
n→∞

|f(xn)| = 1.
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For each n ∈ N, supp(xn) is finite and there exists η(xn) > 0 such that for
every y ∈ BX with supp(xn) ∩ supp(y) = ∅

‖xn + η(xn)y‖ ≤ 1.

Define φn on BX

x 7→ f
(
xn + η(xn)P−1

supp(xn)(x)
)
,

Then φn ∈ Ab(BX) and ‖φn‖ ≤ 1 for all n. Moreover, for each x ∈ S(xn)

|φn(x)| < 1− δ and lim
n→∞

|φn(0)| = 1,

and this contradicts the assumption that {S(x)}x∈V is a uniform family of
0-boundaries for Ab(BX). �

We shall use the following two lemmas, which are proved in [10].

Lemma 4.2 ([10]). Let 0 ≤ r < 1 and assume {Sγ}γ∈Γ is a family of
subsets of BX such that Sγ ∩ rBX 6= ∅ for each γ ∈ Γ. Then {Sγ}γ∈Γ is a
uniform family of 0-boundaries for Ab(BX).

Lemma 4.3 ([10]). Let θ0 > 0 and let {Sγ}γ∈Γ be a family of subsets of
BX with the following property: for each γ ∈ Γ there is some xγ ∈ Sγ such
that eiθxγ ∈ Sγ for every |θ| ≤ θ0. Then {Sγ}γ∈Γ is a uniform family of
0-boundaries for Ab(BX).

Theorem 4.1 and Lemma 4.2 show the following corollary.

Corollary 4.4. Let X be a rearrangement invariant Banach sequence
space satisfying property (4.1) and let V be a boundary for Ab(BX) consisting
of norm-one finite vectors. Assume that S ⊂ BX and that there is 0 ≤ r < 1
such that for each x ∈ V there exists y ∈ X such that

‖y‖ ≤ r , supp(x) ∩ supp(y) = ∅ and x+ η(x)y ∈ S.

Then S is a boundary for Ab(BX).

By Theorem 4.1 and Lemma 4.3, we get the following corollary.

Corollary 4.5. Let X be a rearrangement invariant Banach sequence
space satisfying property (4.1) and let V be a boundary for Ab(BX) consisting
of norm-one finite vectors. Assume that S ⊂ BX and assume that there is
θ0 > 0 such that for each x ∈ V there exists y ∈ BX such that

supp(x) ∩ supp(y) = ∅ and x+ η(x)eiθy ∈ S for all |θ| ≤ θ0.

Then S is a boundary for Ab(BX).
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Example 4.6. Assume that ψ = {ψ(n)} is a strictly increasing sequence
with ψ(0) = 0, ψ(n) > 0 for n ∈ N. The Marcinkiewicz sequence space mψ

consists of all sequences x = {x(n)} such that

‖x‖mψ = sup
n∈N

∑n
k=1 x

∗(k)
ψ(n)

<∞.

Let m0
Ψ be the closed subspace of mψ, equipped with the same norm ‖ · ‖mψ

consisting of all x ∈ mψ satisfying

lim
n→∞

∑n
k=1 x

∗(k)
ψ(n)

= 0.

Without loss of generality we can add (and we will) in the above definition
the assumption that the sequence {ψ(n)

n }∞n=1 is decreasing [13]. Notice that
if ψ(n) = n, then mψ = `∞ and m0

ψ = c0, and if limn ψ(n) < ∞, then
m0
ψ = {0}.
It is shown in [14] that if limn ψ(n) = ∞, then for each x ∈ Bm0

ψ
, there

exist n ∈ N and ε > 0 such that ‖x + λy‖ ≤ 1 for all y ∈ Bmψ with y =
(0, · · · , 0, y(n + 1), y(n + 2), · · · ) and all λ with |λ| ≤ ε. Now it is easy to
see that m0

ψ satisfies (4.1) because m0
ψ is a rearrangement invariant sequence

space.
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