INEQUALITIES AND ASYMPTOTICS FOR A TERMINATING ${}_4F_3$ SERIES

MOURAD E. H. ISMAIL AND PLAMEN SIMEONOV

ABSTRACT. In this paper we give upper bounds for a certain terminating ${}_4F_3$ series. Our estimates confirm special cases of a conjecture of Kresch and Tamvakis. We also give asymptotic estimates when the parameters in the ${}_4F_3$ series are large, and they confirm the same conjecture.

1. Introduction

We first introduce the needed terminology. For a complex number a and an integer n, the shifted factorial $(a)_n$ is defined by

$$(a)_n := \prod_{j=1}^n (a+j-1) = \Gamma(a+n)/\Gamma(a).$$

We set $(a)_0 := 1$ if $a \neq 0$. Next, for an integer n and complex numbers a, b, c, d, e, f, and z, such that $\{d, e, f\} \cap \{-n+1, -n+2, \ldots, -1, 0\} = \emptyset$, the terminating ${}_4F_3$ hypergeometric series is defined by

$$(1.1) 4F_3 \left(\begin{array}{cc|c} -n, & a, & b, & c \\ d, & e, & f \end{array} \middle| z \right) := \sum_{k=0}^n \frac{(-n)_k(a)_k(b)_k(c)_k}{(d)_k(e)_k(f)_k k!} z^k.$$

Let $Q > s, n \ge 1$ be integers. We define

(1.2)
$$R(n,s,Q) := {}_{4}F_{3} \left(\begin{array}{cc} -n, \ n+1, \ -s, \ s+1 \\ 1+Q, \ 1, \ 1-Q \end{array} \right| 1 \right).$$

The series defining R has at most n+1 terms. In this paper we study the following conjecture:

Conjecture 1.1. The terminating $_4F_3$ series R(n,s,Q) defined with (1.2) satisfies

$$(1.3) |R(n,s,Q)| \le 1$$

Received November 23, 2005; received in final form September 10, 2006.

2000 Mathematics Subject Classification. Primary 26D15. Secondary 30E15, 33C45.

 $Key\ words\ and\ phrases.$ Asymptotics, integral representation, logarithmic potential, the Kresch–Tamvakis conjecture, extremal measure.

for all integer numbers $Q > s \ge n \ge 1$.

This inequality was conjectured by A. Kresch and H. Tamvakis in [7]. Extensive numerical evaluations provided overwhelming evidence supporting this conjecture. The expression R(n, s, Q) is the special case $\alpha = \beta = \gamma = 0$ of the Racah polynomials considered by Dunkl in [4].

The Racah polynomials [1], [2], [6], are defined by

(1.4) $R_n(\lambda(x); \alpha, \beta, \gamma, \delta)$

$$= {}_{4}F_{3} \left(\begin{array}{cc} -n, \ n+\alpha+\beta+1, \ -x, \ x+\gamma+\delta+1 \\ \alpha+1, \ \beta+\delta+1, \ \gamma+1 \end{array} \right| \ 1 \right),$$

for n = 0, 1, ..., N, where $\lambda(x) = x(x + \gamma + \delta + 1)$ and $\alpha + 1 = -N$ or $\beta + \delta + 1 = -N$ or $\gamma + 1 = -N$. Selecting $\alpha = \beta = 0$, $\gamma = -N - 1$, and $\delta = N + 1$ we obtain

(1.5)
$$R_n(x(x+1); 0, 0, -N-1, N+1) = R(n, x, N+1).$$

The conjecture of Kresch and Tamvakis states that the absolute value of a Racah polynomial is bounded by its value at x = 0.

Following the ideas of [5] one can establish the generating function (see [6])

(1.6)
$$\sum_{n=0}^{N} \frac{(N+2)_n (-N)_n}{n!^2} R(n, x, N+1) t^n$$

$$= {}_2F_1 \left(\begin{array}{c|c} -x, & -x \\ 1 & \end{array} \right| t \right) {}_2F_1 \left(\begin{array}{c|c} x-N, & x+N+2 \\ 1 & \end{array} \right| t \right).$$

We will use the Whipple transform [6]: If $n \in \mathbb{N}$ and a+b+c+1 = d+e+f+n, then

$$(1.7) \quad {}_{4}F_{3}\left(\begin{array}{cc|c} -n, \ a, \ b, \ c \\ d, \ e, \ f \end{array} \middle| \ 1\right) = \frac{(e-a)_{n}(f-a)_{n}}{(e)_{n}(f)_{n}} \times {}_{4}F_{3}\left(\begin{array}{cc|c} -n, \ a, \ d-b, \ d-c \\ d, \ a-e-n+1, \ a-f-n+1 \end{array} \middle| \ 1\right),$$

the Pfaff-Saalschutz formula [6]:

(1.8)
$${}_{3}F_{2}\left(\begin{array}{cc} -n, \ a, \ b \\ c, \ 1+a+b-c-n \end{array} \middle| \ 1\right) = \frac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}},$$

and the Pfaff-Kummer transform [6]:

$$(1.9) 2F_1 \begin{pmatrix} a, b \\ c \end{pmatrix} = (1-z)^{-a} {}_2F_1 \begin{pmatrix} a, c-b \\ c \end{pmatrix} \frac{z}{z-1}.$$

In Section 2 we verify the conjecture in several special cases. In Section 3 we use an integral representation based on the generating function (1.6), and the methods of Darboux and Laplace to obtain asymptotic estimates of

R(n, x, N+1) when x is fixed, and $R(n, \lambda n, \gamma n+1)$ with fixed $\lambda > 0$ and $\gamma > 1$. These asymptotic estimates also confirm the conjecture.

2. Some special cases

We set

(2.1)
$$R_{2n}(x) := R(n, x, N+1) = {}_{4}F_{3} \begin{pmatrix} -n, n+1, -x, x+1 \\ 1, N+2, -N \end{pmatrix} 1,$$

n, x = 0, 1, ..., N. Note that $R_{2n}(x)$ is the Racah polynomial in (1.5). These Racah polynomials are discrete orthogonal polynomials and their orthogonality relation is

(2.2)
$$\sum_{x=0}^{N} (2x+1)R_{2n}(x)^2 = \frac{(N+1)^2}{2n+1},$$

(see [1], [6]). From (2.2) it follows that

(2.3)
$$|R_{2n}(x)| \le \frac{N+1}{\sqrt{(2n+1)(2x+1)}}.$$

Hence, $|R_{2n}(x)| \le 1$ when $2N + 1 \ge 2x + 1 \ge (N+1)^2/(2n+1)$. This leads to the following lemma.

LEMMA 2.1. The inequality $|R_{2n}(x)| \le 1$ holds for every n and x such that $n \ge N^2/(4N+2)$ and $x \ge ((N+1)^2/(2n+1)-1)/2$. Furthermore, if $N/n \to \gamma \ge 1$ and $x/n \to \lambda > 0$, then

(2.4)
$$\limsup_{n \to \infty} |R_{2n}(x)| \le \frac{\gamma}{2\sqrt{\lambda}}.$$

Next, we consider the special cases x = 0, 1, 2, and x = N.

LEMMA 2.2. The inequality $|R_{2n}(x)| \le 1$ holds for x = 0, 1, 2, and x = N.

Proof. The cases x = 0 and x = 1 are trivial since $R_{2n}(0) = 1$ and

$$R_{2n}(1) = 1 - \frac{2n(n+1)}{N(N+2)}.$$

Now let x = 2. From (2.1) we have

$$R_{2n}(2) = 1 - \frac{6n(n+1)}{N(N+2)} + \frac{6(n-1)n(n+1)(n+2)}{(N-1)N(N+2)(N+3)}$$
$$= 1 - \frac{6n(n+1)(N(N+2) - 1 - n(n+1))}{N(N+2)(N(N+2) - 3)}.$$

It is clear that $R_{2n}(2) \le 1$. Furthermore, since $t(N(N+2)-1-t) \le (N(N+2)-1)^2/4$ when t is between 0 and N(N+1), we get

$$R_{2n}(2) \ge 1 - \frac{3(N(N+2)-1)^2}{2N(N+2)(N(N+2)-3)} > -1.$$

To verify the last inequality we set A = N(N+2) - 1. We have to show that $3A^2 < 4(A+1)(A-2)$, which is equivalent to $(A-2)^2 - 12 > 0$. This is true since $A \ge 7$ when $N \ge 2$.

At x = N, from (2.1) and (1.8) we obtain

$$R_{2n}(N) = {}_{3}F_{2}\left(\begin{array}{c|c} -n, & n+1, & N+1 \\ 1, & N+2 \end{array} \middle| 1\right) = \frac{(-n)_{n}(-N)_{n}}{(1)_{n}(-n-N-1)_{n}}$$
$$= (-1)^{n} \frac{N!(N+1)!}{(N-n)!(N+n+1)!} = (-1)^{n} \prod_{i=1}^{n} \frac{N-n+j}{N+1+j},$$

where we applied (1.8). Thus, $|R_{2n}(N)| \leq 1$.

LEMMA 2.3. The inequality $|R_{2n}(N-1)| \le 1$ holds for every $N \ge 6$.

Proof. Applying (1.7) to $R_{2n}(x)$ with a = n + 1 and d = -N we obtain

$$R_{2n}(x) = (-1)^n \frac{(N-n+1)_n}{(N+2)_n} {}_{4}F_{3} \begin{pmatrix} -n, & n+1, & -N+x, & -N-x-1 \\ -N, & 1, & -N \end{pmatrix} \cdot 1$$

In particular,

$$|R_{2n}(N-1)| = \frac{(N-n+1)_n}{(N+2)_n} \frac{|2n(n+1)-N|}{N}.$$

Clearly, $|R_{2n}(N-1)| \le 1$ when $n(n+1) \le N$. So assume that n(n+1) > N. We have

$$\frac{(N-n+1)_n}{(N+2)_n} = \prod_{j=0}^{n-1} \frac{N-n+1+j}{N+2+j} = \exp\left(\sum_{j=0}^{n-1} \log\left(1 - \frac{n+1}{N+2+j}\right)\right)$$

$$\leq \exp\left(-\sum_{j=0}^{n-1} \frac{n+1}{N+2+j}\right) \leq \exp\left(-(n+1) \int_{N+2}^{N+n+2} \frac{1}{u} du\right)$$

$$= \exp\left(-(n+1) \log \frac{N+n+2}{N+2}\right) = \left(1 - \frac{n}{N+n+2}\right)^{n+1}$$

$$\leq e^{-n(n+1)/(N+n+2)},$$

where we used the inequalities $\log(1-t) \le -t$ and $1-t \le e^{-t}$ for $t \in [0,1)$. Thus, it is enough to show that

$$e^{-n(n+1)/(N+n+2)}(2n(n+1)-N)/N \le 1,$$

or equivalently,

$$(2.5) -\frac{n(n+1)}{N+n+2} + \log\left(\frac{2n(n+1)}{N} - 1\right) \le 0.$$

In view of Lemma 2.1 we may assume that $n \le N/3 - 1$. Then, $N + n + 2 \le 3N/2$ and it is sufficient to verify the inequality

(2.6)
$$-\frac{2n(n+1)}{3N} + \log\left(\frac{2n(n+1)}{N} - 1\right) \le 0.$$

Set $h(t) = -t/3 + \log(t-1)$ with $t = 2n(n+1)/N \ge 2$. We have h'(t) = (4-t)/(3(t-1)), hence $h(t) \le h(4) = \log 3 - 4/3 < 0$ for $t \ge 2$, and (2.6) follows from here.

3. Asymptotic estimates

Since R(n, x, N+1) = R(x, n, N+1) we may assume that $x \leq n$. Integrating the generating function (1.6) we obtain

(3.1)
$$R(n, x, N+1) = \frac{n!^2}{(N+2)_n(-N)_n} \frac{1}{2\pi i} \int_{\Gamma} {}_2F_1 \begin{pmatrix} -x, -x & | & t \\ 1 & | & t \end{pmatrix} \times {}_2F_1 \begin{pmatrix} -(N-x), & N+x+2 & | & t \end{pmatrix} t^{-n-1} dt,$$

where Γ is a simple closed contour containing 0 in its interior. The $_2F_1$ functions can be expressed in terms of the Jacobi polynomials

(3.2)
$$p_n^{(\alpha,\beta)}(t) = \frac{(\alpha+1)_n}{n!} {}_2F_1\left(\begin{array}{cc} -n, & n+\alpha+\beta+1 \\ \alpha+1 \end{array} \middle| \frac{1-t}{2}\right).$$

From (1.9) we have

(3.3)
$${}_{2}F_{1}\left(\begin{array}{c|c} -x, & -x \\ 1 & \end{array} \middle| t\right) = (1-t)^{x}{}_{2}F_{1}\left(\begin{array}{c|c} -x, & x+1 \\ 1 & \end{array} \middle| \frac{t}{t-1}\right)$$

$$= (1-t)^{x}P_{x}\left(\frac{1+t}{1-t}\right),$$

where $P_x = p_x^{(0,0)}$ denotes the Legendre polynomial of degree x. The second ${}_2F_1$ becomes

(3.4)
$${}_{2}F_{1}\left(\begin{array}{cc} -(N-x), N+x+2 \\ 1 \end{array} \middle| t\right) = p_{N-x}^{(0,2x+1)}(1-2t).$$

1. Asymptotic estimate for fixed x. Let x be fixed and $N/n = \gamma_n \to \gamma \geq 1$, as $n \to \infty$. Taking a limit in (2.1) as $n \to \infty$ we obtain

$$\begin{split} &\lim_{n\to\infty} R(n,x,N+1) = \lim_{n\to\infty} \sum_{k=0}^x \frac{(-x)_k (x+1)_k}{k!^2} \frac{(-n)_k (n+1)_k}{(-N)_k (N+2)_k} \\ &= \sum_{k=0}^x \frac{(-x)_k (x+1)_k}{k!^2} \gamma^{-2k} = {}_2F_1 \left(\begin{array}{c|c} -x, & x+1 \\ 1 \end{array} \middle| \gamma^{-2} \right) = P_x (1-2\gamma^{-2}). \end{split}$$

The above limit belongs to the interval [-1, 1] since the Legendre polynomials P_x satisfy $|P_x(t)| \le 1$ for $-1 \le t \le 1$, (see [12, Section 7.21]).

2. Asymptotic estimate for large x. Let $x/n = \lambda \in (0,1]$ and $N/n = \gamma > 1$ be fixed rational numbers. From [12, Theorem 8.21.7] and [12, Theorem 8.21.9], we have the asymptotic formula (3.5)

$$P_x(w) = (2\pi x)^{-1/2} \left\{ \frac{(w + (w^2 - 1)^{1/2})^{1/2}}{(w^2 - 1)^{1/4}} + O(x^{-1}) \right\} (w + (w^2 - 1)^{1/2})^x,$$

uniformly on compact subsets of $\mathbb{C} \setminus [-1,1]$. Furthermore, by the Bernstein-Walsh lemma [13], $|P_x(w)| \leq (w + (w^2 - 1)^{1/2})^x$ for every $w \in \mathbb{C}$. Here we use the branch of the logarithmic function defined by $\log z = \log |z| + i \arg(z)$ with $\arg(z) \in (-\pi,\pi), z \in \mathbb{C} \setminus (-\infty,0]$.

An asymptotic formula for the polynomials $p_{N-x}^{(0,2x+1)}(1-2t)$ can be derived using the method of Darboux. We will use the generating function [10]

$$(3.6) g(w) := \sum_{n=0}^{\infty} p_n^{(\alpha_0 + \alpha_n, \beta_0 + \beta_n)}(z) w^n = \frac{(1+\xi)^{\alpha_0 + 1} (1+\eta)^{\beta_0 + 1}}{1 - \alpha \xi - \beta \eta - (1+\alpha + \beta)\xi \eta},$$

where

$$(3.7) \ 2\xi = (z+1)w(1+\xi)^{1+\alpha}(1+\eta)^{1+\beta}, \quad 2\eta = (z-1)w(1+\xi)^{1+\alpha}(1+\eta)^{1+\beta},$$

and $\alpha > -1$, $\beta > -1$, α_0 , and β_0 are real constants. This generating function was used in [3] to determine the strong asymptotics of the above Jacobi polynomials on the interval [-1,1].

The generating function in (3.6) has a singularity when

(3.8)
$$D(\xi) := 1 - \alpha \xi - \beta \eta - (1 + \alpha + \beta) \xi \eta = 0.$$

From (3.7) we get $\eta = (z-1)\xi/(z+1)$ and (3.8) takes the form

$$(3.9) (1+\alpha+\beta)(1-z)\xi^2 - (\alpha(z+1)+\beta(z-1))\xi + (z+1) = 0.$$

If $(1 + \alpha + \beta)(1 - z) \neq 0$, the roots of (3.9) are

(3.10)
$$\xi_{\pm} = \frac{(\alpha + \beta)z + (\alpha - \beta) \pm \sqrt{\Delta}}{2(1 + \alpha + \beta)(1 - z)},$$

where

The corresponding w-values are obtained from (3.7):

(3.12)
$$w_{\pm} = 2\xi_{\pm}(1+\xi_{\pm})^{-\alpha-1}(1+\eta_{\pm})^{-\beta-1}/(z+1).$$

Now we study the behavior of g(w) near its singularities. From (3.7) we obtain

(3.13)
$$\xi(1+\xi)(1+\eta)\frac{dw}{d\xi} = wD(\xi),$$

hence $dw/d\xi = 0$ at $\xi = \xi_{\pm}$. Differentiating (3.13) with respect to ξ at $\xi = \xi_{\pm}$ we obtain

$$(3.14) 2A_{\pm} := \frac{d^2w}{d\xi^2}\bigg|_{\xi_{\pm}} = \frac{w_{\pm}D'(\xi_{\pm})}{\xi_{\pm}(1+\xi_{\pm})(1+\eta_{\pm})} = \frac{\pm w_{\pm}\sqrt{\triangle}/(z+1)}{\xi_{\pm}(1+\xi_{\pm})(1+\eta_{\pm})}.$$

Thus, $w - w_{\pm} = (A_{\pm} + O(\xi - \xi_{\pm}))(\xi - \xi_{\pm})^2$ as $\xi \to \xi_{\pm}$, and therefore,

(3.15)
$$\xi - \xi_{\pm} = (w - w_{\pm})^{1/2} (A_{\pm} + O((w - w_{\pm})^{1/2}))^{-1/2}, \quad w \to w_{\pm}.$$

From (3.15) it follows that $w_+ = w_-$ if and only if $\xi_+ = \xi_-$. Indeed, if $w_+ = w_-$, (3.15) implies $\xi \to \xi_+$ as $w \to w_+$, and $\xi \to \xi_-$ as $w \to w_- = w_+$, hence $\xi_+ = \xi_-$, which is equivalent to $\Delta = 0$.

Assume first that $\Delta \neq 0$ and set $B_{\pm} := \lim_{w \to w_{\pm}} (w - w_{\pm})^{1/2} g(w)$. From (3.6) and (3.7) it follows that $B_{\pm} \neq 0$. Then, we define $w_0 = w_+$ and $B_0 = B_+$ if $|w_+| \leq |w_-|$, and $w_0 = w_-$ and $B_0 = B_-$ if $|w_+| > |w_-|$. The function g(w) is analytic in $|w| < |w_0|$, and in a neighborhood of w_{\pm} ,

$$g(w) = \sum_{n=0}^{\infty} g_{n,\pm} (w - w_{\pm})^{n-1/2},$$

where $g_{n,\pm} = ((w-w_{\pm})^{1/2}g(w))^{(n)}|_{w_{\pm}}/n!$. Consider the function H defined by

(3.16)
$$H(w) := g(w) - g_{0,+}(w - w_{+})^{-1/2} - g_{1,+}(w - w_{+})^{1/2} - g_{0,-}(w - w_{-})^{-1/2} - g_{1,-}(w - w_{-})^{1/2}.$$

It has a continuous first derivative h(w) = H'(w) in $|w| \le |w_0|$. Let $H(w) = \sum_{n=0}^{\infty} h_n w^n$ be the power series expansion of H around w = 0. Using that h(w) is continuous in $|w| \le |w_0|$ we obtain

$$(n+1)h_{n+1} = \lim_{\rho \to |w_0|, \rho < |w_0|} \frac{1}{2\pi i} \int_{|w| = \rho} \frac{h(w)}{w^{n+1}} dw$$
$$= \frac{1}{2\pi |w_0|^n} \int_0^{2\pi} h(|w_0|e^{i\theta}) e^{-in\theta} d\theta.$$

For a fixed z, $nh_n|w_0|^n \to 0$ as $n \to \infty$ by the Riemann-Lebesgue lemma. This convergence is uniform with respect to z. Indeed, let E be a compact set. Note that $\tilde{h}(z,\theta) := h(|w_0|e^{i\theta})$ is continuous and therefore uniformly continuous on the compact set $E \times [0,2\pi]$. Let $\epsilon > 0$ and choose $\delta > 0$ so that $|\tilde{h}(z_1,\theta_1) - \tilde{h}(z_2,\theta_2)| < \epsilon/2\pi$ whenever $|z_1 - z_2| + |\theta_1 - \theta_2| < \delta$, $z_{1,2} \in E$, $\theta_{1,2} \in [0,2\pi]$. Let $\{z_i\}_{i=1}^k \subset E$ be such that for every $z \in E$ there exists z_i such that $|z-z_i| < \delta$. Finally, for each $i=1,\ldots,k$, let $s_i(\theta)$ be a step-function with p_i steps, such that $||\tilde{h}(z_i,\theta) - s_i(\theta)||_{[0,2\pi]} < \epsilon/2\pi$. Then,

$$\left| \int_{0}^{2\pi} \tilde{h}(z,\theta) e^{-in\theta} d\theta \right| \leq \left| \int_{0}^{2\pi} s_{j}(\theta) e^{-in\theta} d\theta \right|$$

$$+ \left| \int_{0}^{2\pi} (\tilde{h}(z_{j},\theta) - s_{j}(\theta)) e^{-in\theta} d\theta \right| + \left| \int_{0}^{2\pi} (\tilde{h}(z,\theta) - \tilde{h}(z_{j},\theta)) e^{-in\theta} d\theta \right|$$

$$\leq \frac{2 \max\{p_{i}\}_{i=1}^{k} \max\{||s_{i}||_{[0,2\pi]}\}_{i=1}^{k}}{n} + 2\epsilon < 3\epsilon,$$

if n is large enough. We have shown that $h_n=o(n^{-1}|w_0|^{-n})$ uniformly on compact sets of the variable z. Since $\binom{\nu-1/2}{n}=O(n^{-\nu-1/2})$ and $g_{1,\pm}(z)$ are bounded on compact sets we obtain

$$(3.17) \quad p_n^{(\alpha_0 + \alpha_n, \beta_0 + \beta_n)}(z)$$

$$= -i \left| \binom{-1/2}{n} \right| w_0^{-n - 1/2} \left(B_0 + B_1 \left(\frac{w_0}{w_1} \right)^{n + 1/2} \right) + o(n^{-1} |w_0|^{-n}),$$

where $B_1 = (B_+ + B_-) - B_0$ and $w_1 = (w_+ + w_-) - w_0$. Formula (3.17) holds uniformly on compact sets of the variable z.

Similarly, if $\triangle = 0$, then $\xi_+ = \xi_-$. At $\xi = \xi_+$, $d^2w/d\xi^2 = 0$ and from (3.13) we get

(3.18)
$$\frac{d^3w}{d\xi^3}\Big|_{\xi_+} = \frac{2(1+\alpha+\beta)(1-z)w_+}{(z+1)\xi_+(1+\xi_+)(1+\eta_+)}.$$

Hence, $w-w_+=O((\xi-\xi_+)^3)$ and $\xi-\xi_+=O((w-w_+)^{1/3}),\ w\to w_+$. We set $w_0=w_+=w_-$. Then, $g(w)=\sum_{n=0}^\infty g_{n,0}(w-w_0)^{n-2/3},\ w\to w_0$, where $g_{n,0}=((w-w_0)^{2/3}g(w))^{(n)}|_{w_0}/n!$. Using the function

$$H(w) := g(w) - g_{0,0}(w - w_0)^{-2/3} - g_{1,0}(w - w_0)^{1/3}$$

and the above argument we can show that in the case $\triangle = 0$,

$$(3.19) \quad p_n^{(\alpha_0 + \alpha n, \beta_0 + \beta n)}(z) = e^{-2\pi i/3} g_{0,0} \left| \binom{-2/3}{n} \right| w_0^{-n-2/3} + o(n^{-1}|w_0|^{-n}).$$

The factor w_0 in (3.17) or in (3.19) (the *n*-th root asymptotics) can be found using the asymptotic zero distribution of the polynomials $p_n^{(\alpha_0 + \alpha n, \beta_0 + \beta n)}$.

For $\alpha \geq 0$ and $\beta \geq 0$ the Jacobi weight $w_{\alpha,\beta}$ is defined by

$$w_{\alpha,\beta}(x) := (1-x)^{\alpha}(1+x)^{\beta}, \quad x \in [-1,1].$$

The corresponding extremal measure $\mu_{\alpha,\beta}$ has probability density ([11, Section IV.5])

(3.20)
$$v_{\alpha,\beta}(t) = \frac{(1+\alpha+\beta)}{\pi} \frac{\sqrt{(t-a)(b-t)}}{1-t^2}, \quad t \in S_{\alpha,\beta},$$

where ([11, Section IV.1]) $S_{\alpha,\beta}$ denotes the interval

$$[a,b] = [\lambda_2^2 - \lambda_1^2 - D^{1/2}, \lambda_2^2 - \lambda_1^2 + D^{1/2}],$$

with $\lambda_1 = \alpha/(1+\alpha+\beta)$, $\lambda_2 = \beta/(1+\alpha+\beta)$, and $D = (1-(\lambda_1+\lambda_2)^2)(1-(\lambda_1-\lambda_2)^2)$. In particular, $ab = 2(\lambda_1^2+\lambda_2^2)-1$ and $a+b=2(\lambda_2^2-\lambda_1^2)$, which yield the identities

(3.22)
$$\sqrt{(1-a)(1-b)} = \frac{2\alpha}{1+\alpha+\beta}, \quad \sqrt{(1+a)(1+b)} = \frac{2\beta}{1+\alpha+\beta}.$$

The Jacobi polynomials $\{p_n^{(\alpha,\beta)}\}$ are orthogonal with respect to $w_{\alpha,\beta}$ on [-1,1]. The normalized zero-counting measure $\nu_{n,\alpha,\beta}$ associated with $p_n^{(\alpha,\beta)}$ is the discrete probability measure having mass 1/n at each zero of $p_n^{(\alpha,\beta)}$. Let $\gamma_n^{(\alpha,\beta)}$ denote the leading coefficient of $p_n^{(\alpha,\beta)}$.

Theorem 3.1. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences of nonnegative numbers satisfying $\alpha_n/n \to 2\alpha \geq 0$ and $\beta_n/n \to 2\beta \geq 0$ as $n \to \infty$. Then,

(3.23)
$$\nu_{n,\alpha_n,\beta_n} \to \mu_{\alpha,\beta}, \quad n \to \infty$$

in the weak-star topology of measures, and

(3.24)
$$\lim_{n \to \infty} p_n^{(\alpha_n, \beta_n)}(z)^{1/n} = c_{\alpha, \beta} e^{-u_{\alpha, \beta}(z)},$$

uniformly on compact subsets of $\mathbb{C} \setminus S_{\alpha,\beta}$, where

(3.25)
$$c_{\alpha,\beta} = \lim_{n \to \infty} \left(\gamma_n^{(\alpha_n, \beta_n)} \right)^{1/n} = \frac{(2\alpha + 2\beta + 2)^{2\alpha + 2\beta + 2}}{2(2\alpha + 2\beta + 1)^{2\alpha + 2\beta + 1}}$$

and $u_{\alpha,\beta}(z)$ is the complex logarithmic potential defined by

$$(3.26) u_{\alpha,\beta}(z) := \int_{S_{\alpha,\beta}} \log \frac{1}{z-t} v_{\alpha,\beta}(t) dt, \quad z \in \mathbf{C} \setminus (-\infty, b].$$

A proof of Theorem 3.1 can be found in [9]. Let $U^{\mu}(z) := \int \log 1/|z-t| \, d\mu(t)$ denote the logarithmic potential of a measure μ . We define

(3.27)
$$\tilde{u}_{\alpha,\beta}(z) := \begin{cases} u_{\alpha,\beta}(z), & z \in \mathbf{C} \setminus (-\infty, b], \\ U^{\mu_{\alpha,\beta}}(z), & z \in (-\infty, a). \end{cases}$$

LEMMA 3.2. Let $z \in \mathbb{C} \setminus S_{\alpha/2,\beta/2}$. Then, $|w_0| = e^{U^{\mu_{\alpha/2,\beta/2}}(z)}/c_{\alpha/2,\beta/2}$. Furthermore, if $|w_0| < |w_1|$ or $w_0 = w_1$, then $w_0 = e^{u_{\alpha/2,\beta/2}(z)}/c_{\alpha/2,\beta/2}$.

Proof. If $w_0 = w_1$, the statement follows from (3.19) and (3.24). If $w_0 \neq w_1$, from (3.17) and (3.24) it follows that the limit

(3.28)
$$L := \lim_{n \to \infty} \left(1 + \frac{B_1}{B_0} \left(\frac{w_0}{w_1} \right)^{n+1/2} \right)^{1/n} = w_0 c_{\alpha/2, \beta/2} e^{-u_{\alpha/2, \beta/2}(z)}$$

exists for every $z \in \mathbf{C} \setminus S_{\alpha/2,\beta/2}$. In particular, (3.24) shows that $w_0 \neq 0$, $z \in \mathbf{C} \setminus S_{\alpha/2,\beta/2}$. Note that L = L(z). We will show that |L| = 1.

From (3.28) and $|w_0| \le |w_1|$ it follows that $0 \le |L| \le 1$ and since $w_0 \ne 0$, |L| > 0. Assuming that |L| < 1 for some $z \in \mathbb{C} \setminus S_{\alpha/2,\beta/2}$, from (3.28) we get

$$\lim_{n \to \infty} (w_0/w_1)^{n+1/2} = \lim_{n \to \infty} B_0/B_1(-1 + (L+o(1))^n) = -B_0/B_1 \neq 0,$$

and therefore, $|w_0| = |w_1|$ and $|B_0| = |B_1|$. Setting $w_0/w_1 = e^{i\theta}$ with $\theta \in [0, 2\pi)$ we obtain

$$\lim_{n \to \infty} e^{in\theta} = -e^{-i\theta/2} B_0 / B_1,$$

which is possible if and only if $\theta = 0$. Then, $w_0 = w_1$, which is a contradiction. Thus, |L| = 1, that is,

$$c_{\alpha/2,\beta/2}|w_0| = |\exp(u_{\alpha/2,\beta/2}(z))| = \exp(U^{\mu_{\alpha/2,\beta/2}}(z)).$$

If $|w_0| < |w_1|$, (3.28) yields

$$L = \lim_{n \to \infty} \exp\left(\frac{1}{n}\log\left(1 + \frac{B_0}{B_1}(w_0/w_1)^{n+1/2}\right)\right) = 1.$$

The lemma is proved.

We recall that $x = \lambda n$ and $N = \gamma n$ with $\lambda \in (0,1]$ and $\gamma > 1$. Without loss of generality we may assume that $\Delta \neq 0$. Indeed, in what follows $\alpha = 0$ and z = 1 - 2t. In view of (3.11) the solutions of $\Delta = 0$ are t = 0 and $t = 1 - \beta^2/(\beta + 2)^2$. The contours Γ in (3.1) will be selected so that the size of $|R(n, \lambda n, \gamma n + 1)|$ will be determined at a value t_1 defined by (3.40) that is either a complex number, or a real number larger than $1/\lambda^2 > 1$.

From (3.1), (3.3), (3.4), (3.5), (3.17), and Lemma 3.2 we obtain:

LEMMA 3.3. The ${}_{4}F_{3}$ expression $R(n, \lambda n, \gamma n + 1)$ has the representation

(3.29)
$$R(n, \lambda n, \gamma n + 1) = \frac{n!^2}{(N+2)_n (-N)_n} \frac{1}{2\pi i} \int_{\Gamma} A_n(t) \exp(nf(t)) dt,$$

where

$$A_n(t) = \frac{1}{2t\sqrt{\pi x}} \left(\frac{1+\sqrt{t}}{\sqrt[4]{t}} + O(x^{-1}) \right)$$

$$\times \left(-i \left| \binom{-1/2}{N-x} \right| \left(B_0 + B_1 \left(\frac{w_0(1-2t)}{w_1(1-2t)} \right)^{N-x+1/2} \right) + o((N-x)^{-1}) \right)$$

$$\times \left(\frac{\exp(\tilde{u}_{0,\lambda/(\gamma-\lambda)}(1-2t))}{w_0(1-2t)} \right)^{N-x} w_0(1-2t)^{-1/2},$$

$$(3.30) f(t) = -\log t + 2\lambda \log(1 + \sqrt{t}) - (\gamma - \lambda)\tilde{u}_{0,\lambda/(\gamma - \lambda)}(1 - 2t),$$

and Γ is a simple closed contour containing 0 in its interior.

We shall write $A(x) \sim B(x)$ if $A(x)/B(x) \to 1$ as $x \to \infty$. Using the asymptotic formula $\Gamma(x+1) \sim (x/e)^x \sqrt{2\pi x}$ we derive

(3.31)
$$\frac{n!^2}{(N+2)_n(-N)_n} \sim (-1)^n \frac{2\pi\gamma}{\gamma+1} \left(\frac{\gamma-1}{\gamma+1}\right)^{1/2} \left(\frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}}\right)^n n.$$

From (3.31) and Lemma 3.3 we obtain

$$(3.32) |R(n,\lambda n,\gamma n+1)| \le c \left(c_{0,\lambda/(\gamma-\lambda)}^{\gamma-\lambda} \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}} \right)^n \int_{\Gamma} |A(t)| e^{n\operatorname{Re} f(t)} |dt|,$$

where

(3.33)
$$A(t) = \frac{1}{|t|\sqrt{|w_0(1-2t)|}} \left(\frac{(1+|\sqrt{t}|)}{|t|^{1/4}} (|B_0(t)| + |B_1(t)|) + 1 \right)$$

and

$$c = c(\lambda, \gamma) = \frac{1}{\sqrt{\lambda(\gamma - \lambda)}} \frac{\gamma}{\gamma + 1} \left(\frac{\gamma - 1}{\gamma + 1}\right)^{1/2}.$$

In (3.32) we used that $\left|\binom{-1/2}{x}\right| \sim 1/\sqrt{\pi x}$ for large x.

From [11, Section IV.5] we have the formula

(3.34)
$$\frac{d}{dz}\tilde{u}_{\alpha,\beta}(z) = (1+\alpha+\beta)\frac{\sqrt{(z-a)(z-b)}}{1-z^2} - \frac{\alpha}{1-z} + \frac{\beta}{1+z},$$

for $z \in \mathbb{C} \setminus [a, b]$, $z \neq \pm 1$, where on $(-\infty, a)$ this is the real derivative of $U^{\mu_{\alpha,\beta}}$ restricted on $(-\infty, a)$.

When $\alpha=0$ and $\beta=\lambda/(\gamma-\lambda)$, from (3.22) we get (1-a)(1-b)=0 and $(1+a)(1+b)=4\lambda^2/\gamma^2$. Since $a< b\leq 1$, it follows that b=1 and $a=2\lambda^2/\gamma^2-1$. Formula (3.34) implies

$$(3.35) \qquad \frac{d}{dz}\tilde{u}_{0,\lambda/(\gamma-\lambda)}(z)|_{z=1-2t} = -\frac{\gamma}{\gamma-\lambda}\frac{\sqrt{t(t-b^*)}}{2t(1-t)} + \frac{\lambda/(\gamma-\lambda)}{2(1-t)},$$

where $b^* := 1 - \lambda^2/\gamma^2$. We compute f'(t) using (3.30) and (3.35):

$$(3.36) f'(t) = -\frac{1}{t} + \frac{\lambda}{(1+\sqrt{t})\sqrt{t}} + 2(\gamma-\lambda)\frac{d}{dz}\tilde{u}_{0,\lambda/(\gamma-\lambda)}(z)|_{z=1-2t}$$

$$= \frac{t-1+\lambda\sqrt{t}-\gamma\sqrt{t(t-b^*)}}{t(1-t)} = \frac{1}{t}\left(-1+\frac{(\lambda-\gamma\sqrt{t-b^*})\sqrt{t}}{1-t}\right)$$

$$= \frac{1}{t}\left(-1+\frac{\gamma^2\sqrt{t}}{\lambda+\gamma\sqrt{t-b^*}}\right).$$

The solutions of the equation f'(t) = 0 will be used to determine the asymptotics of the integral in (3.32). From (3.36) it follows that f'(t) = 0 is equivalent to

$$(3.37) \lambda + \gamma \sqrt{t - b^*} = \gamma^2 \sqrt{t},$$

which implies

(3.38)
$$\gamma^{2}(t - b^{*}) = (\gamma^{2}\sqrt{t} - \lambda)^{2},$$

and then,

$$(3.39) (\gamma^2 - 1)t - 2\lambda\sqrt{t} + 1 = 0.$$

The solutions of (3.39) are

(3.40)
$$t_{1,2} = \left(\frac{\lambda \pm \sqrt{\lambda^2 - \gamma^2 + 1}}{\gamma^2 - 1}\right)^2.$$

If t_1 and t_2 are complex numbers, at $t=t_{1,2}$, $\operatorname{Re}\sqrt{t-b^*}>0$ by the choice of the square root branch, and $\operatorname{Re}(\gamma^2\sqrt{t}-\lambda)=\lambda/(\gamma^2-1)>0$. Thus, $t_{1,2}$ are the solutions of (3.37) and the equation f'(t)=0 in this case. If t_1 and t_2 are real, (3.38) implies $t_{1,2}\geq b^*$. Since $(\gamma^2\sqrt{t_1}-\lambda)+(\gamma^2\sqrt{t_2}-\lambda)=2\lambda/(\gamma^2-1)>0$, we get $\gamma^2\sqrt{t_1}-\lambda>0$, and by (3.37) and (3.36), $f'(t_1)=0$. Next,

$$(\gamma^2 \sqrt{t_1} - \lambda)(\gamma^2 \sqrt{t_2} - \lambda) = \gamma^4 \sqrt{t_1 t_2} - \gamma^2 \lambda (\sqrt{t_1} + \sqrt{t_2}) + \lambda^2 = \frac{\gamma^4 - (\gamma^2 + 1)\lambda^2}{\gamma^2 - 1},$$

which shows that in this case $f'(t_2) = 0$ if and only if $\lambda \leq \gamma^2 / \sqrt{\gamma^2 + 1}$. We will use the following formula for $u_{\alpha,\beta}$ from [11, Section IV.5]:

$$(3.41) \quad u_{\alpha,\beta}(z) = -\alpha \log \left(\frac{\zeta - \zeta_{+}}{\zeta_{+}\zeta - 1}\right) - \beta \log \left(\frac{\zeta - \zeta_{-}}{\zeta_{-}\zeta - 1}\right) - (\alpha + \beta + 1) \log \zeta + \alpha \log(1 - z) + \beta \log(1 + z) + F_{\alpha,\beta},$$

where

(3.42)
$$\zeta = \phi(z) = \frac{2z - a - b + 2\sqrt{(z-a)(z-b)}}{b-a} = \frac{(\sqrt{z-a} + \sqrt{z-b})^2}{b-a},$$

 $\zeta_{+} = \phi(1), \ \zeta_{-} = \phi(-1), \ a \ \text{and} \ b \ \text{are defined with (3.21), and} \ F_{\alpha,\beta} \ \text{is a real constant.}$ Note that $u_{\alpha,\beta}(z) \sim -\log z \ \text{and} \ \zeta \sim 4z/(b-a) \ \text{as} \ z \to \infty$. Thus, taking real parts in (3.41) and then letting $z \to \infty$ we get

(3.43)
$$F_{\alpha,\beta} = -\alpha \log |\zeta_{+}| - \beta \log |\zeta_{-}| + (\alpha + \beta + 1) \log(4/(b - a)).$$

From (3.42) and (3.43) we obtain

(3.44)
$$F_{\alpha,\beta} = (\alpha + \beta + 1) \log 4 - \log(b - a) - 2\alpha \log \left| \sqrt{1 - a} + \sqrt{1 - b} \right| - 2\beta \log \left| \sqrt{1 + a} + \sqrt{1 + b} \right|.$$

When $\alpha = 0$ and $\beta = \lambda/(\gamma - \lambda)$, we have $a = 2\lambda^2/\gamma^2 - 1$, b = 1, and then,

$$(3.45) F_1 := e^{-(\gamma - \lambda)F_{0,\lambda/(\gamma - \lambda)}} = 4^{-\gamma} (2(1 - \lambda^2/\gamma^2))^{\gamma - \lambda} (\sqrt{2}(1 + \lambda/\gamma))^{2\lambda}$$
$$= 2^{-\gamma} (1 - \lambda/\gamma)^{\gamma - \lambda} (1 + \lambda/\gamma)^{\gamma + \lambda}.$$

From (3.42) we get

(3.46)
$$\zeta_{-} = -\frac{(1 + \lambda/\gamma)^{2}}{(1 - \lambda^{2}/\gamma^{2})}.$$

Furthermore, (3.41) and the identity ([11, Section IV.5])

$$(\zeta - \zeta_{\pm})(\zeta_{\pm}\zeta - 1) = 4(z \mp 1)\zeta_{\pm}\zeta/(b - a)$$

yield

$$(3.47) e^{-(\gamma-\lambda)u_{0,\lambda/(\gamma-\lambda)}(z)} = F_1(1+z)^{-\lambda} \left(\frac{\zeta-\zeta_-}{\zeta_-\zeta-1}\right)^{\lambda} \zeta^{\gamma}$$
$$= F_1((b-a)/4)^{\lambda} \zeta_-^{-\lambda} \left(\frac{\zeta-\zeta_-}{1+z}\right)^{2\lambda} \zeta^{\gamma-\lambda}.$$

Hence, from (3.30), (3.47), and (3.46) with z = 1 - 2t it follows that

(3.48)
$$e^{f(t)} = F_1(-2)^{-\lambda} (1 - \lambda/\gamma)^{2\lambda} \frac{1}{t} \left(\frac{\zeta - \zeta_-}{2(1 - \sqrt{t})} \right)^{2\lambda} \zeta^{\gamma - \lambda}.$$

Note that by (3.25),

(3.49)
$$c_{0,\lambda/(\gamma-\lambda)}^{\gamma-\lambda} = \frac{2^{\gamma+\lambda}\gamma^{2\gamma}}{(\gamma-\lambda)^{\gamma-\lambda}(\gamma+\lambda)^{\gamma+\lambda}}.$$

The product of the constant factors that are raised to power n in (3.32) can be computed using (3.45), (3.48), and (3.49):

$$(3.50) F := c_{0,\lambda/(\gamma-\lambda)}^{\gamma-\lambda} \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}} F_1 2^{-\lambda} (1-\lambda/\gamma)^{2\lambda} = \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}} (1-\lambda/\gamma)^{2\lambda}.$$

LEMMA 3.4. The function $F(t) := c_{0,\lambda/(\gamma-\lambda)}^{\gamma-\lambda} \frac{(\gamma-1)^{\gamma-1}}{(\gamma+1)^{\gamma+1}} e^{f(t)}$ satisfies (3.51) $|F(t_1)F(t_2)| = 1.$

Proof. From (3.39) we obtain the identities

(3.52)
$$\sqrt{t_1} + \sqrt{t_2} = 2\lambda/(\gamma^2 - 1), \quad \sqrt{t_1 t_2} = 1/(\gamma^2 - 1),$$
$$t_1 + t_2 = 2(2\lambda^2 - \gamma^2 + 1)/(\gamma^2 - 1)^2.$$

From (3.42) with z = 1 - 2t, $a = 2\lambda^2/\gamma^2 - 1$, and b = 1 we get

(3.53)
$$\zeta = \frac{1 - 2t - \lambda^2/\gamma^2 - 2\sqrt{t(t - 1 + \lambda^2/\gamma^2)}}{1 - \lambda^2/\gamma^2}.$$

In particular, at $t = t_{1,2}$, equations (3.53), (3.36), and (3.39) yield

(3.54)
$$\zeta(t) = \frac{1 - 2t - \lambda^2/\gamma^2 - 2(t - 1 + \lambda\sqrt{t})/\gamma}{1 - \lambda^2/\gamma^2}$$
$$= \frac{\gamma^2 - \lambda^2 - \gamma((\gamma + 1)^2 t - 1)}{\gamma^2 - \lambda^2}.$$

Furthermore, using (3.54) and (3.46), at $t = t_{1,2}$ we obtain

$$\begin{split} (3.55) \qquad r(t) &:= \frac{\zeta - \zeta_{-}}{2(1 - \sqrt{t})} \\ &= \frac{1 - 2t - \lambda^{2}/\gamma^{2} - 2(t - 1 + \lambda\sqrt{t})/\gamma + (1 + \lambda/\gamma)^{2}}{2(1 - \lambda^{2}/\gamma^{2})(1 - \sqrt{t})} \\ &= \frac{(1 + 1/\gamma)(1 - t) + \lambda(1 - \sqrt{t})/\gamma}{(1 - \lambda^{2}/\gamma^{2})(1 - \sqrt{t})} = \frac{(\gamma + 1)(1 + \sqrt{t}) + \lambda}{\gamma(1 - \lambda^{2}/\gamma^{2})}. \end{split}$$

We evaluate the product $\zeta(t_1)\zeta(t_2)$ using (3.54) and (3.52):

$$\begin{split} (\gamma^2 - \lambda^2)^2 \zeta(t_1) \zeta(t_2) &= (\gamma^2 - \lambda^2)^2 - \gamma (\gamma^2 - \lambda^2) [(\gamma + 1)^2 (t_1 + t_2) - 2] \\ &+ \gamma^2 [(\gamma + 1)^4 t_1 t_2 - (\gamma + 1)^2 (t_1 + t_2) + 1] \\ &= (\gamma^2 - \lambda^2)^2 - 4 \gamma (\gamma^2 - \lambda^2) (\lambda^2 - \gamma^2 + \gamma) / (\gamma - 1)^2 \\ &+ 4 \gamma^2 (\gamma^2 - \lambda^2) / (\gamma - 1)^2 \\ &= (\gamma^2 - \lambda^2)^2 (1 + 4 \gamma / (\gamma - 1)^2). \end{split}$$

Thus,

(3.56)
$$\zeta(t_1)\zeta(t_2) = \frac{(\gamma+1)^2}{(\gamma-1)^2}.$$

Next, we evaluate the product $r(t_1)r(t_2)$ using (3.55) and (3.52):

$$\begin{split} &(\gamma^2 - \lambda^2)^2 r(t_1) r(t_2) / \gamma^2 \\ &= (\gamma + \lambda + 1)^2 + (\gamma + \lambda + 1) (\gamma + 1) (\sqrt{t_1} + \sqrt{t_2}) + (\gamma + 1)^2 \sqrt{t_1 t_2} \\ &= [(\gamma - 1) (\gamma + \lambda + 1)^2 + 2\lambda (\gamma + \lambda + 1) + \gamma + 1] / (\gamma - 1) \\ &= [(\gamma - 1) ((\gamma + 1)^2 + 2\lambda (\gamma + 1) + \lambda^2) + (2\lambda + 1) (\gamma + 1) + 2\lambda^2] / (\gamma - 1) \\ &= (\gamma + 1) [(\gamma^2 - 1) + 2\lambda (\gamma - 1) + \lambda^2 + 2\lambda + 1] / (\gamma - 1) \\ &= (\gamma + \lambda)^2 (\gamma + 1) / (\gamma - 1). \end{split}$$

Therefore,

(3.57)
$$r(t_1)r(t_2) = \frac{\gamma^2(\gamma+1)}{(\gamma-\lambda)^2(\gamma-1)}.$$

Finally, (3.48), (3.50), (3.52), (3.56), and (3.57) yield

$$F(t_1)F(t_2) = (-1)^{-2\lambda}F^2(t_1t_2)^{-1}(r(t_1)r(t_2))^{2\lambda}(\zeta(t_1)\zeta(t_2))^{\gamma-\lambda}$$

$$= (-1)^{-2\lambda}\frac{(\gamma-1)^{2(\gamma-1)}}{(\gamma+1)^{2(\gamma+1)}}\frac{(\gamma-\lambda)^{4\lambda}}{\gamma^{4\lambda}}(\gamma^2-1)^2$$

$$\times \frac{\gamma^{4\lambda}(\gamma+1)^{2\lambda}}{(\gamma-\lambda)^{4\lambda}(\gamma-1)^{2\lambda}}\frac{(\gamma+1)^{2(\gamma-\lambda)}}{(\gamma-1)^{2(\gamma-\lambda)}}$$

$$= (-1)^{-2\lambda},$$

and (3.51) follows.

In the proof of our main result below we will use the following lemma.

LEMMA 3.5. Let f be analytic function in a domain D, u = Re(f), and $z = re^{i\theta}$. Then,

(3.58)
$$\frac{\partial u}{\partial r} = \operatorname{Re}(zf'(z))/r, \quad \frac{\partial u}{\partial \theta} = -\operatorname{Im}(zf'(z)).$$

Proof. Let f=u+iv and $z=e^{i\theta}=x+iy$. Then, with $u_x=\partial u/\partial x$ and $u_y=\partial u/\partial y$ we have

$$\frac{\partial u}{\partial r} = u_x \cos \theta + u_y \sin \theta = (xu_x + yu_y)/r = \text{Re}((x+iy)(u_x - iu_y))/r,$$

and

$$\frac{\partial u}{\partial \theta} = -u_x(r\sin\theta) + u_y(r\cos\theta) = -yu_x + xu_y = -\operatorname{Im}((x+iy)(u_x - iu_y)).$$

Then (3.58) follows since $u_x - iu_y = u_x + iv_x = f'(z)$ by the Cauchy-Riemann equations. \Box

We will also use a theorem based on the Laplace method from [8, Theorem 3.7.1].

THEOREM 3.6. Let $p(\tau)$ and $q(\tau)$ be functions defined on an interval (a, b) that satisfy the following conditions:

- (a) $p(\tau) < p(a)$ when $\tau \in (a,b)$, and for every $c \in (a,b)$ the infimum of $p(a) p(\tau)$ in [c,b) is positive.
- (b) $p'(\tau)$ and $q(\tau)$ are continuous in a neighborhood of a, except possibly at a
- (c) As $\tau \to a$ from the right,

$$p(\tau) - p(a) \sim P(\tau - a)^{\nu}, \quad q(\tau) \sim Q,$$

and the first of these relations is differentiable. Here P<0 and $\nu>0$ are constants.

(d) The integral

$$I(n) = \int_{a}^{b} q(\tau)e^{np(\tau)} d\tau$$

converges absolutely throughout its range for all sufficiently large n.

Then,

$$I(n) \sim \frac{Q}{\nu} \Gamma\left(\frac{1}{\nu}\right) \frac{e^{np(a)}}{(-Pn)^{1/\nu}}, \quad n \to \infty.$$

Next, we determine the set $\{t : \text{Im}(tf'(t)) = 0\}$ for the function f(t) defined with (3.30). For $t \in \mathbb{C} \setminus (-\infty, b^*]$ we set

$$(3.59) \ t = J(w) := \frac{b^*}{4} \left(w + \frac{1}{w} \right)^2, \quad w = Re^{i\theta}, \quad R > 1, \quad \theta \in (-\pi/2, \pi/2).$$

Then, $t-b^*=(b^*/4)(w-1/w)^2$. Substituting in (3.36) we obtain

$$(3.60) tf'(t) = -1 + \frac{\gamma^2 \sqrt{b^*}(w^2 + 1)}{2\lambda w + \gamma \sqrt{b^*}(w^2 - 1)} = -1 + \frac{\gamma(w^2 + 1)}{w^2 + \delta w - 1}$$

$$= -1 + \gamma + \frac{\gamma(2 - \delta w)}{w^2 + \delta w - 1} = -1 + \gamma \left(1 + \frac{w_1}{w - w_1} + \frac{w_2}{w - w_2}\right)$$

$$= -1 + \gamma \left(1 + \frac{w_1(\bar{w} - w_1)}{|w - w_1|^2} + \frac{w_2(\bar{w} - w_2)}{|w - w_2|^2}\right),$$

where $\delta := 2\lambda/(\gamma\sqrt{b^*}) = 2\lambda/\sqrt{\gamma^2 - \lambda^2}$ and $w^2 + \delta w - 1 = (w - w_1)(w - w_2)$. Note that the numbers $w_{1,2} = (-\lambda \pm \gamma)/\sqrt{\gamma^2 - \lambda^2}$ are real. From (3.60) it follows that

$$\operatorname{Im}(tf'(t)) = -\gamma \left(\frac{w_1}{|w - w_1|^2} + \frac{w_2}{|w - w_2|^2} \right) R \sin \theta.$$

Thus, $\operatorname{Im}(tf'(t)) = 0$ is equivalent to $\sin \theta = 0$, that is, $t \in (b^*, \infty)$, or

$$w_1|w - w_2|^2 + w_2|w - w_1|^2 = 0.$$

Since $w_1 + w_2 = -\delta$ and $w_1 w_2 = -1$, the last equation becomes

(3.61)
$$w_1(R^2 + w_2^2 - 2Rw_2\cos\theta) + w_2(R^2 + w_1^2 - 2Rw_1\cos\theta)$$
$$= -\delta R^2 + 4R\cos\theta + \delta = 0,$$

which represents a circle \tilde{C} with center $2/\delta$ and radius $\tilde{r} = \sqrt{4/\delta^2 + 1} = \gamma/\lambda$. Setting $\tilde{C}_+ := \{ w \in \tilde{C} : \operatorname{Re}(w) > 0 \}$ we obtain:

LEMMA 3.7. The zero set of $\operatorname{Im}(tf'(t))$ is the set $(b^*, \infty) \cup J(\tilde{C}_+)$.

The set $J(\tilde{C}_+)$ has an interesting property. If $t = t(\theta) = J(w)$, where $w = Re^{i\theta}$ and $R = R(\theta) > 1$ is the solution of (3.61), then $|t(\theta)|$ decreases as $|\theta| \in [0, \pi/2)$ increases. This can be seen as follows: For $t \in J(\tilde{C}_+)$,

$$t(\theta) = J\left(Re^{i\theta}\right) = \frac{b^*}{4} \left((R+1/R)\cos\theta + i(R-1/R)\sin\theta \right)^2,$$

and from (3.61) we have $R-1/R=(R^2-1)/R=4\cos\theta/\delta$. Therefore,

(3.62)
$$(4/b^*)|t(\theta)| = (R+1/R)^2 \cos^2 \theta + (R-1/R)^2 \sin^2 \theta$$

$$= R^2 + 1/R^2 + 2\cos 2\theta = (16/\delta^2)\cos^2 \theta + 2 + 2\cos 2\theta$$

$$= 4(4/\delta^2 + 1)\cos^2 \theta = 4(\gamma^2/\lambda^2)\cos^2 \theta,$$

which is a decreasing function of $|\theta| \in [0, \pi/2)$. In particular, since the set $J(\tilde{C}_+)$ is symmetric about the real line, every circle C_r with center at the origin and radius r > 0 intersects that set at most twice.

The main result of this paper is the following theorem:

THEOREM 3.8. Let $\lambda \in (0,1]$ and $\gamma > 1$ be fixed rational numbers. Then, $R(n, \lambda n, \gamma n + 1) \to 0$ as $n \to \infty$.

Proof. From (3.36) we obtain

$$(3.63) \quad (tf'(t))' = f'(t) + tf''(t) = \frac{\gamma^2 \left(\frac{\lambda + \gamma \sqrt{t - b^*}}{2\sqrt{t}} - \frac{\gamma \sqrt{t}}{2\sqrt{t - b^*}} \right)}{(\lambda + \gamma \sqrt{t - b^*})^2}, \ t \notin (-\infty, b^*].$$

At $t = t_{1,2}$, f'(t) = 0 and (3.63) and (3.37) yield

(3.64)
$$2t^{2}f''(t) = 1 - \frac{\sqrt{t}}{\gamma^{2}\sqrt{t} - \lambda} = \frac{(\gamma^{2} - 1)\sqrt{t} - \lambda}{\gamma^{2}\sqrt{t} - \lambda}, \quad t = t_{1,2}.$$

We consider three cases separately.

Case 1. The numbers $t_{1,2}$ in (3.40) are complex. In this case $D:=\lambda^2+1-\gamma^2<0$ and $\sqrt{t_{1,2}}=(\lambda\pm i\sqrt{|D|})/(\gamma^2-1)$. We set $t=t_1e^{i\tau}$. Then, as $\tau\to 0$, $t-t_1=t_1(i\tau-\tau^2/2+O(\tau^3))$ and

$$f(t) = f(t_1) + (t - t_1)^2 f''(t_1)/2 + O\left((t - t_1)^3\right)$$

= $f(t_1) + (-\tau^2 - i\tau^3 + O(\tau^4))t_1^2 f''(t_1)/2 + O(\tau^3)$.

Therefore,

(3.65)
$$\operatorname{Re}(f(t) - f(t_1)) = -\tau^2 \operatorname{Re}(t_1^2 f''(t_1)) / 2 + O(\tau^3), \quad \tau \to 0.$$

Now from (3.64) we get

$$2t_1^2 f''(t_1) = \frac{i\sqrt{|D|}}{\gamma^2(\lambda + i\sqrt{|D|})/(\gamma^2 - 1) - \lambda} = \frac{i(\gamma^2 - 1)\sqrt{|D|}}{\lambda + i\gamma^2\sqrt{|D|}},$$

and (3.65) becomes

(3.66)
$$\operatorname{Re}(f(t) - f(t_1)) = -\frac{(\gamma^2 - 1)\gamma^2 |D|}{4(\lambda^2 + \gamma^4 |D|)} \tau^2 + O(\tau^3), \quad \tau \to 0.$$

Hence, $\operatorname{Re}(f(t_1))$ is a local maximum of $\operatorname{Re}(f(t))$ on the circle $C_{|t_1|}$. Note that in this case $t_2 = \bar{t}_1$ and by (3.64) the real parts of $t_1^2 f''(t_1)$ and $t_2^2 f''(t_2)$ are the same. Since $C_{|t_1|} \cap J(\tilde{C}_+) = \{t_1, t_2\}$, using Lemmas 3.5 and 3.7 we obtain $\operatorname{Re}(f(t)) < \operatorname{Re}(f(t_1))$ for every $t \in C_{|t_1|}$, $t \neq t_{1,2}$. We choose the contour of integration in (3.32) to be $\Gamma = C_{|t_1|}$ in this case. To apply Theorem 3.6 we set (for all cases)

$$p(\tau) := \log |F(t(\tau))|, \quad q(\tau) := |A(t(\tau))|,$$

where F(t) is the function defined in Lemma 3.4 and $t = t(\tau)$ is a suitable parametrization of the contour Γ or part of Γ . In this case it is enough to consider $t(\tau) = t_1 e^{i\tau}$ with $\tau \in [0, \pi)$. Then, $P = -\operatorname{Re}(t_1^2 f''(t_1))/2 < 0$, $\nu = 2$, and $Q = |A(t_1)|$. It is clear that all conditions of Theorem 3.6 are satisfied, including (d), which follows from Lemma 3.4 and the choice of the contour Γ . From (3.32), Theorem 3.6, and Lemma 3.4 we get

$$(3.67) |R(n,\lambda n,\gamma n+1)| = O\left(\frac{|A(t_1)| \cdot |F(t_1)|^n}{\sqrt{n}}\right) = O\left(\frac{1}{\sqrt{n}}\right).$$

Case 2. The numbers $t_{1,2}$ are real and $t_1 \neq t_2$. Now we have D > 0, $\sqrt{t_{1,2}} = (\lambda \pm \sqrt{D})/(\gamma^2 - 1)$, and by (3.38), $t_1 > t_2 > b^*$. From (3.64), at $t = t_{1,2}$ we get

$$(3.68) 2t^2 f''(t) = \frac{\pm (\gamma^2 - 1)\sqrt{D}}{\lambda \pm \gamma^2 \sqrt{D}}.$$

In particular, $f''(t_1) > 0$. Furthermore, if $f'(t_2) = 0$, then $\gamma^4 \ge (\gamma^2 + 1)\lambda^2$, which implies $\lambda^2 \ge \gamma^4 D$ and by (3.68), $f''(t_2) < 0$ or it is undefined. Then, $f(t_1) < f(t_2)$ and by Lemma 3.4, $F(t_1) < 1$. We set $t = t_1 e^{i\tau}$ and using that $f'(t) = (t - t_1)f''(t_1) + O((t - t_1)^2)$ as $\tau \to 0$, $\tau > 0$ and Lemma 3.5 we obtain

(3.69)
$$\frac{d}{d\tau} \operatorname{Re}(f(t)) = -\operatorname{Im}(t_1^2(e^{2i\tau} - e^{i\tau})f''(t_1)) + O(\tau^2)$$
$$= -\frac{(\gamma^2 - 1)\sqrt{D}}{2(\lambda + \gamma^2\sqrt{D})}\tau + O(\tau^2), \quad \tau \to 0, \quad \tau > 0.$$

Thus, Re(f(t)) has a local maximum at t_1 on the circle $C_{|t_1|}$. Furthermore, by (3.62),

$$(3.70) \quad t^* := \max\{|t| : t \in J(\tilde{C}_+)\} = \frac{\gamma^2 - \lambda^2}{\lambda^2} < \frac{1}{\lambda^2} < \frac{1}{\gamma^2 - 1} = \sqrt{t_1 t_2} < t_1$$

in this case, and therefore, $C_{|t_1|} \cap J(\tilde{C}_+) = \emptyset$. From Lemmas 3.5 and 3.7 it follows that $\operatorname{Re}(f(t)) < \operatorname{Re}(f(t_1))$ for every $t \in C_{|t_1|}$, $t \neq t_1$, and we again select the contour Γ in (3.32) to be the circle $C_{|t_1|}$. As in Case 1, we use the parametrization $t(\tau) = t_1 e^{i\tau}$, $\tau \in [0, \pi)$, and the same P, ν , and Q. From (3.32), Theorem 3.6, and Lemma 3.4 it follows that

(3.71)
$$|R(n,\lambda n,\gamma n+1)| = O\left(\frac{F(t_1)^n}{\sqrt{n}}\right).$$

Case 3. The numbers $t_{1,2}$ are equal. In this case $\gamma^2 = \lambda^2 + 1$ and $t_1 = t_2 = 1/\lambda^2$. From (3.36) we have f'(t) = N(t)/S(t) with

$$N(t) := \gamma^2 \sqrt{t - \gamma \sqrt{t - b^*}} - \lambda, \quad S(t) := t(\lambda + \gamma \sqrt{t - b^*}).$$

Differentiating the equation Sf' = N twice we get S''f' + 2S'f'' + Sf''' = N''. At $t = t_1$ we have f'(t) = 0, f''(t) = 0, $\sqrt{t - b^*} = 1/(\gamma \lambda)$, and $S(t) = \gamma^2/\lambda^3$. Therefore, at $t = t_1$ we obtain

(3.72)
$$f'''(t) = \frac{N''(t)}{S(t)} = \left(-\frac{\gamma^2}{4t^{3/2}} + \frac{\gamma}{4(t - b^*)^{3/2}}\right) \frac{1}{S(t)}$$
$$= -(\gamma/4)(\lambda^3 \gamma - \lambda^3 \gamma^3)\lambda^3/\gamma^2 = \lambda^8/4.$$

By Taylor's theorem,

(3.73)
$$f(t) = f(t_1) + (t - t_1)^3 f'''(t_1)/6 + O((t - t_1)^4), \quad t \to t_1, \quad t \in \mathbf{R},$$

and since $f'''(t_1) > 0$, it follows that on the interval (t_1, ∞) , f(t) is increasing. Setting $t = t_1 + se^{i\pi/3}$ with s > 0 in the Taylor series for f' we obtain

$$f'(t) = (t - t_1)^2 f'''(t_1)/2 + O((t - t_1)^3) = s^2 e^{2i\pi/3} \lambda^8 / 8 + O(s^3), \quad s \to 0,$$

$$\frac{d}{ds}\operatorname{Re}(f(t_1 + se^{i\pi/3})) = \operatorname{Re}(\frac{d}{ds}f(t_1 + se^{i\pi/3})) = \operatorname{Re}(f'(t)dt/ds)$$
$$= \operatorname{Re}(s^2e^{i\pi}\lambda^8/8 + O(s^3)) = -s^2\lambda^8/8 + O(s^3), \quad s \to 0,$$

which shows that $\text{Re}(f(t_1+se^{i\pi/3}))$ is decreasing on an interval (0,h) for some h>0. We set

$$r := \left| t_1 + he^{i\pi/3} \right| = \sqrt{t_1^2 + h^2 + t_1 h} > t_1 = t^*,$$

where t^* is the number defined with (3.70). By the definitions of r and t^* it follows that $C_r \cap J(\tilde{C}_+) = \emptyset$, and therefore, Re(f(t)) is monotone on each of the semicircles $C_r^{\pm} = \{re^{\pm i\theta} : \theta \in (0,\pi)\}$. Since

$$\operatorname{Re}(f(r)) > \operatorname{Re}(f(t_1)) > \operatorname{Re}(f(t_1 + he^{i\pi/3}))$$

and $\operatorname{Re}(f(\bar{t})) = \operatorname{Re}(f(t))$, the functions $\operatorname{Re}(f(re^{\pm i\theta}))$ are decreasing on $(0,\pi)$. In Case 3 we choose the contour Γ in (3.32) to be the union of the arc $\{t \in C_r : \operatorname{Re}(t) \leq t_1 + h/2\}$ and the line segments $\{t = t_1 + se^{\pm i\pi/3} : s \in [0,h]\}$. It is sufficient to apply Theorem 3.6 only on one of the line segments: $t(\tau) = t_1 + \tau e^{i\pi/3}, \ \tau \in [0,h]$. In this case $P = -f'''(t_1)/6 = -\lambda^8/24 < 0$, $\nu = 3$, and $Q = |A(t_1)|$. From (3.32), Theorem 3.6, and Lemma 3.4 we get $F(t_1) = 1$ and

$$(3.74) |R(n, \lambda n, \gamma n + 1)| = O\left(|A(t_1)| \cdot F(t_1)^n n^{-1/3}\right) = \left(n^{-1/3}\right).$$

This completes the proof of Theorem 3.8.

References

- G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
- [2] L. C. Biedenharn and J. D. Louck, The Racah-Wigner algebra in quantum theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley Publishing Co., Reading, Mass., 1981, With a foreword by Peter A. Carruthers, With an introduction by George W. Mackey. MR 636504 (83d:81002)
- [3] L.-C. Chen and M. E. H. Ismail, On asymptotics of Jacobi polynomials, SIAM J. Math. Anal. 22 (1991), 1442–1449. MR 1112518 (92g:33011)
- [4] C. F. Dunkl, Orthogonal polynomials with symmetry of order three, Canad. J. Math. 36 (1984), 685–717. MR 756539 (86h:33003)
- [5] M. E. H. Ismail and J. A. Wilson, Asymptotic and generating relations for the q-Jacobi and 4φ3 polynomials, J. Approx. Theory 36 (1982), 43–54. MR 673855 (84e:33012)
- [6] R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Reports of the Faculty of Technical Mathematics and Informatics, No. 98-17, Delft University of Technology, Delft, 1998.
- [7] A. Kresch and H. Tamvakis, Standard conjectures for the arithmetic Grassmannian G(2, N) and Racah polynomials, Duke Math. J. 110 (2001), 359–376. MR 1865245 (2003d:14033)
- [8] F. W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd.,
 Wellesley, MA, 1997, Reprint of the 1974 original [Academic Press, New York;
 MR0435697 (55 #8655)]. MR 1429619 (97i:41001)
- [9] P. Simeonov, Zero distribution of sequences of classical orthogonal polynomials, Abstr. Appl. Anal. (2003), 985–993. MR 2029520 (2006a:33011)
- [10] H. M. Srivastava and J. P. Singhal, New generating functions for Jacobi and related polynomials, J. Math. Anal. Appl. 41 (1973), 748-752. MR 0326028 (48 #4374)
- [11] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, vol. 316, Springer-Verlag, Berlin, 1997. MR 1485778 (99h:31001)

- [12] G. Szegő, Orthogonal polynomials, fourth ed., American Mathematical Society, Providence, R.I., 1975, American Mathematical Society, Colloquium Publications, Vol. XXIII. MR 0372517 (51 #8724)
- [13] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587 (36 #1672a)

Mourad E. H. Ismail, Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

 $E ext{-}mail\ address: ismail@math.ucf.edu}$

PLAMEN SIMEONOV, DEPARTMENT OF COMPUTER AND MATHEMATICAL SCIENCES, UNIVERSITY OF HOUSTON-DOWNTOWN, HOUSTON, TX 77002, USA

 $E\text{-}mail\ address{:}\ \mathtt{simeonovp@uhd.edu}$