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ASYMPTOTIC /¢, HEREDITARILY INDECOMPOSABLE
BANACH SPACES

IRENE DELIYANNI AND ANTONIS MANOUSSAKIS

ABSTRACT. For every 1 < p < oo we construct an asymptotic ¢, Banach
space which is hereditarily indecomposable and such that its dual is
asymptotic ¢; hereditarily indecomposable, where ¢ is the conjugate
of p. We prove that cp is finitely representable in these spaces and
that every bounded linear operator on these spaces is a strictly singular
perturbation of a multiple of the identity.

1. Introduction

In recent years the study of the geometry of hereditarily indecomposable
(HI) Banach spaces has revealed new structural phenomena in Banach space
theory. A Banach space X is called HI if no infinite-dimensional closed sub-
space of X can be written as the direct sum of two infinite-dimensional closed
subspaces. The study of the geometry of HI Banach spaces has been initi-
ated after the solution of the unconditional basic sequence problem by W.T.
Gowers and B. Maurey [15], and the dichotomy theorem due to W.T. Gowers
[14]. Concerning the geometry of HI spaces, S.A. Argyros and the first named
author [2] provided examples of asymptotic ¢; HI spaces, and V. Ferenczi [11]
using complex interpolation arguments gave examples of uniformly convex HI
Banach spaces. Concerning the structure of the dual as well as the quotients
of an HI space, V. Ferenczi [12] proved that the dual and the quotients of
the Gowers-Maurey space are HI spaces. The Argyros-Felouzis dichotomy [5]
shows that in general this is not the case, since from their results it follows
that the classical spaces are quotients of HI spaces. Moreover, S.A. Argyros
and A. Tolias [8] proved that every separable Banach space Z not containing
£1 is a quotient of an HI space X and Z* is complemented in X*. We refer
the reader to the handbook article of B. Maurey [17] and the lecture notes by
S.A. Argyros [7] for a comprehensive study of HI spaces.
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In this paper we provide examples of asymptotic ¢, HI Banach spaces, for
1 < p < oo. We recall the definition of an asymptotic ¢, Banach space.

DEFINITION 1.1. Let 1 < p < co. A Banach space X with a normalized
basis (ey,), is said to be an asymptotic ¢, space if there exists a constant C
such that, for every n € N, any sequence of normalized vectors (z;)!; with
n < suppxy < -+ < supp, is C-equivalent to the unit vector basis of £}.

Examples of asymptotic ¢; HI Banach spaces were given in [2]. In the
present paper we construct, for every 1 < p < oo, a real asymptotic ¢, HI
space X(,). We also prove that the spaces X, have the following properties:

(1) For every infinite-dimensional closed subspace Y of X ), every bounded
linear operator T': Y — X, is of the form T' = Ay +5, where A is a scalar, Iy
is the inclusion operator from Y to X, and S is a strictly singular operator.
Real asymptotic ¢; spaces with the same property were constructed in [8].
Recall also that, as proved by V. Ferenczi in [10] (see also [15]), this property
characterizes complex HI Banach spaces.

(2) co is finitely representable in every subspace of X(,). It was proved
in [3] that the asymptotic ¢; HI Banach spaces constructed in [2] also have
this property. It follows that the spaces X(,) do not contain uniformly convex
subspaces. We do not know whether similar constructions can yield examples
of uniformly convex HI spaces. This would be interesting in particular in the
case p = 2, since it is related to the question whether there exists a weak
Hilbert HI Banach space.

(3) The dual X(*p) of the space X, is also an HI space. Since the dual of

an asymptotic £, space is asymptotic ¢;, where % + % =1, we get, for every
1 < g < o0, an asymptotic £, HI space X(4), and a dually defined asymptotic
¢y HI space X, (*p), which are proved to be totally incomparable. We note that
asymptotic ¢; HI Banach spaces with HI duals were constructed in [§].

Our construction is based on a p-convexified mixed Tsirelson space. Namely,
we use as frame the mixed Tsirelson spaces X = T'[(S,;,0;);] introduced in
[2], where (n;); is an increasing sequence of positive integers, (6;); is a se-
quence of positive reals decreasing to zero and, for n € N, §,, is the Schreier
family of order n. Let us recall the definition.

DEFINITION 1.2 ([1]). We set
So={{n} :neNyU{0}, Si={FCN:#F<minF}U{0}

and forn =1,2,...,

k
Sn+1={UFi:FiESn foralli <k, F} <--- < Fy

i=1

and (min F;)¥_, € Sl} u{0}.
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We next give a brief description of the space X(,). Denote by ¢ the conju-
gate of p. We first consider the unconditional counterpart X, , of the space
X(p)- This is an asymptotic £, Banach space with an unconditional basis.
The ball of X  is closed as a subset of £, under the (S,;,0;) g-convex op-
eration for every j € N. This means that if f; <--- < fg is a S,,,;-admissible
family in BXZ,p (Definition 2.1), then 6, Z?:l Bifi € BXé_p for every choice
of coefficients (3;)%, € By, . Moreover, Bx; is minimal with this property.
In fact, X, is the p-convexification of the asymptotic ¢ space T'[(Sy,,0;);]
constructed in [2].

We now turn to the space X(,). X(p) has a norming set D C Bx, ', which is
closed under the (S,,,,02;) g-convex operation for every j € N. This implies
in particular that, if (z;)%, is a block sequence in X(p) with d < minsupp z1,

then
d d 1/p
in > 0y (Z ||$ip> .
i=1 i=1

Using an appropriate coding function o, i.e., an injective map from the count-
able set of finite block sequences of vectors with rational coordinates to the
natural numbers, we define for every j € N some special Sy, ,-admissible
sequences of vectors, which we call (0,25 4+ 1)-sequences. If (fi1,..., f2q) is a
(0,25 + 1)-sequence, then every functional of the form

d
0251 Z Yi(fai—1 + f2i)s

i=1

where (21/%;)L | € By, and E is an interval of N, is called a (S, ,,,02;+1)-
special functional.

The norming set D is rationally convex and minimal with the property of
being closed under the (S,,;,02;) g-convex operation for every j € N as well
as under the formation of (Sp,,,,,02;41) special functionals for every j € N.

The use of some type of special functionals defined by means of a coding
function is common in every construction of an HI space so far, starting from
[15]. Let us add a few comments on our choice of special functionals:

The fact that the coefficients (7;)%_, are chosen freely yields that the space
satisfies an upper ¢, estimate (Proposition 2.9). On the other hand, the
restriction that the two elements of each pair (fa;—1, f2;) have the same coef-
ficient allows us to prove the following:

For every j € N and every pair of block subspaces Y and Z of X, there
exist a sequence of vectors (zk)iil in By, with x3;1 €Y and z9; € Z, for
every i = 1,...,d, and a p-convex combination x = E?Zl a;(wo;—1+x2;), such
that:
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(i) = is well normed by a (Sp,,,,,02;j+1)-special functional of the form

02511 o0, Yi(faio1 + fai), where, for each k = 1,...,2d, fr(zx) = 1.
(ii) The norm of Z = Zle a;(x2i—1 — T2;) is less than Chyj41] || (where
C' is a constant).

This yields that the space X, is hereditarily indecomposable using the fol-
lowing standard characterization of HI spaces. A Banach space X is hereditar-
ily indecomposable if and only if, for every € > 0 and all infinite-dimensional
subspaces Y, Z of X there exist y € Y and z € Z with |ly — z|| < elly + 2|

Our terminology and notation is standard and can be found in [16].

Acknowledgment. We would like to thank S. Argyros for valuable dis-
cussions.

2. The space X(,) and its norming set

In this section we give the definition of the space X(,), by constructing its
norming set. We give some properties of the norming set of this space and
we prove that X,y is an asymptotic ¢, space (Proposition 2.9). We show
that the dual space X Ekp) is an asymptotic £4-space, where ¢ is the conjugate

*

of p, and moreover that the asymptotic ¢, spaces X o

) and X(,) are totally
incomparable.

Let (e;)$2, be the standard basis of the linear space cg of finitely supported
sequences. For z =) .2 a;e; € coo, the support of x is the set suppz = {i €
N : a; # 0}. The range of x, written ranz, is the smallest interval of N
containing the support of x. For finite subsets E, F of N, E < F means
max F < minF or either £ or F is empty. Forn € N, F C N, n < FE
(resp. E < n) means n < min E (resp. max E < n). For x,y in ¢op, z < y
means suppz < suppy. For n € N, & € ¢pp, we write n < x (resp. = < n) if
n < supp z (resp. suppz < n). We say that the sets F; CN,i=1,...,n, are
successwe if By < Ey < --+ < E,. Similarly, the vectors x;, it = 1,...n, are
successive if x1 < x9 < -+ < x,. For x = Zf; a;e; and F a subset of N, we
denote by Ex the vector Ex = ZiEE a;e;.

Let M be a family of finite subsets of N. We say that M is compact if
it is closed in the topology of pointwise convergence in 2N. M is hereditary
if whenever B C A and A € M, then B € M. M is spreading if whenever
A={mq,...,mp} € Mand B ={nq,...,n;} is such that, forall i = 1,.. .k,
m; < n;, then B € M.

It is easy to see that, for every n € N, the Schreier family §,, (Definition
1.2) is compact, hereditary and spreading.

DEFINITION 2.1. Let M be a family of finite subsets of N.

(a) A finite sequence (E;)% ; of subsets of N is M-admissible if there
exists (ki)gzl € M such that k1 < Ey < ks < Ey < -+ < kg < Ey.
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If M is spreading, this is equivalent to 1 < Fs < --- < E4 and
{min £y, ..., min E4} € M.

(b) A finite sequence (x;)"_; of vectors in cop is M-admissible if the se-
quence (supp x;)"_; is M-admissible.

Fix p € [1,00). In the sequel, whenever we write m; or n; we shall refer to
a pair of fixed recursively defined sequences of natural numbers satisfying the
following properties: m; =4, ny =1 and, for j € N,
(1) mj41 is a power of 2 and mjiq > m?,
and
(2) (logy(m;)+1)(v(j)(nj-1+1)+1) < ny, where v(j) = [3plog,,, (m;)]+2.
Let

W= {(flw-wfd):fi € coo, fi 70, fi(n) € Q

foralli <d,n €N, and f1<---<fd}.

We consider a partition of N into two infinite sets Ny and N,. We also consider
a coding function o : W — {2j : j € No} with the following properties.

(i) o is one-to-one.

(ll) O-(fh"'?f’i—l) <U(f17'-'7fi—17fi)'
1
(iii) mo(sy,..p) > max{ ckesupp fy, J= 1,...,i}~maxsuppfi
T FACHI
for every (f1,...,fq) € Wandi=1,...,d.

DEFINITION 2.2. Let (K2;);en be a sequence of subsets of ¢gg consisting of
vectors with rational coordinates and let j € N. A sequence (fi,..., fq) € W
is called a (o, j)-sequence (with respect to the family (Ko;)ien) if:

(i) f1 € Kyj, for some j; € Ny with 2j; > j+5, and f; € Ky, 1)
fori=2,...,d.
(ii) The set (f1,..., fa) is Sn,-admissible.

We now construct a sequence (K™),, of subsets of ¢gg as follows:

We set K° = {+e,, : n € N} and D° = convg K, where convg M denotes
the rational convex hull of M. Assume that for some n > 0 we have defined
the sets K, j € N, and we have set K" = Uj K3 and D" = convg K™. Then,
for j € N, we set

d
1
ngﬂ:K;j.u{wZﬁifi: deN, fieD",5;eQfor i=1,2,....,d,
J =1

(Bi)i<a € By, \ {0} and (f1, fa,..., fa) is San—admissible}
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and
d
EZ%(fgi,l + f2;) : Eis an interval of N, d € N,

i=1

v €Q fori=1,...,d,(2"9;);<q € By, \ {0} and (f1,..., foa)

n+l __grn
Kyjn =K1 U {

maj+1

is a(0,2j + 1) — sequence with respect to the family (K;i),;eN}.

We set K" = |J; K" and D"+ = convg K™+

For every i € N, weset L; = [, K. For j € N, the functionals contained
in the set Laj11 = U, ey K311 are called 2j + 1-special functionals.

Finally, we set K = J,, K™ and D = J,, D". The space X,y is defined as
the completion of ¢og under the norm ||z|| = ||z||p = sup{(f,z) : f € D}.

REMARKS 2.3. (i) It is easily verified that the sets K and D are symmetric
and closed under the projection of their elements on intervals. It follows that
the sequence (e, )nen is a bimonotone basis of X,).

(ii) A simple inductive argument shows that K™ C By, for every n € N
and therefore D C By, . It follows that, for every f € D and ), 4 aie; € coo,
we have [f(3_;c 4 aiei)| < [[(ai)ieally, -

(iii) By the definition of the norm and since D is rationally convex it follows

that B X, = DY = Ep, where D" is the pointwise closure of D.

(iv) The set D is closed under the (S,,;,1/ms;)-operation for every j € N,
ie., if fi < -+ < fqis an Sp,,-admissible sequence of elements of D and
(B:)¢_, is a rational g-convex combination, then 1/ma; ijl Gifie KCD. If
some [3; are not rational, then it follows by (iii) that 1/mao; Z‘::l Gifi € BX(*p).

DEFINITION 2.4 (The tree Ty corresponding to f € D). Let f € D. By
a tree analysis of f (or a tree corresponding to f) we mean a finite family
Ty = (fi)ie7 indexed by a finite tree 7 with a unique root 0 € 7 such that
the following conditions are satisfied:

(1) fo=fand fre D forallteT.

(2) If t € 7, then t is maximal if and only if f; € K°.

(3) For every t € 7 which is not maximal we denote by S; the set of
immediate successors of ¢ in 7. Then exactly one of the following
three statements holds:

(a) Sy = {s1,...,8a}, where fs, < --- < f,, and there exist j € N
and (B;)%_, € By, such that the family (fs,,...,fs,) i Sny,-
admissible and

1 d
fi= m—%;@f&.
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(b) There exist j € N, a (0,2§ + 1)-sequence with respect to the
family (Lo;)ien, (g1, - -, g2d), coefficients ()%, € ﬁng and
an interval E such that

d
1
fe= — E ;%‘(921’—1 + 92i);
in this case {fs : s € S} = {Fg; :i < 2d, Eg; # 0}.
(¢) St = {s1,...,84} and there exists a family of positive rationals

(r)¢, with 2?21 r; = 1 such that f; = 2?21 rifs,- Moreover,
for every i <d, fs, € K and ran f,, C ran f;.

An easy inductive argument shows that every f € D admits a tree analysis.

NOTATION 2.5. For every f € K\ K, if f is of the form f = mi] Zle G fis
where (fi)i<a C D is S,,-admissible and (8;)i<a € By,, then we say that
the weight of f is m; and denote it by w(f). Note that the weight of a
functional is not necessarily uniquely determined. However, when we refer to
a 27 + 1-special functional f = m;ﬂEZ;l:l Yi(fai—1 + far), then by w(f;)

we shall always mean w(f;) = my(y,,....f,_,) for i > 2 and w(f1) will satisfy
w(f1) > majta.

LEMMA 2.6.
(a) Let f = mlzj Zle Bifi € K. Then, for every subset A of {1,...,k},
we have
1
— > Bifi|| < 1(Bi)ieall,, -
(b) Let f = — EZ?:l Yi(fai—1 + f2i) € Laj1 be a special functional.

m2j41

Then, for every interval I C {1,...,d}, we have

1
|| EY 7ilfoi1 + f) | < 2'/° I(vi)ierlly, -

maj+1 iel

Proof. The proofs of (a) and (b) are similar, so we shall prove only (b).
We set

5 — o

29| (vi)ierlle,

and §; = 0 otherwise. Then we have (21/‘151-)1-61 € Sy, and hence

, foriel,

d

;EZ+(f2i—1+f21) = EZéi(fzi_1+f2i)

M2j+1 57 21/q||(%‘)z‘el||eq M2+l o
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belongs to B Xp,- Therefore,

EZ%(sz‘—l + f2i)

el

<2V (a)setl, - 0

|| maj+1

REMARK 2.7. In the sequel, for a special functional

1

maj41

d
EY vi(fai-1+ fai)

i=1
we shall also use the notation

1 2d
f= EY Bifi,

maj41

i=1
where (B2;_1 = fB2; = v; for i = 1,...,d. In this case, for every interval
I, denoting by I’ be the smallest interval of positive integers of the form
[2n — 1,2m] which contains I, it follows from the previous lemma that

L ES 6

maj+1 el

< Bi)ierll,, -

NoTAaTION 2.8. (a) Let (ax)ken be a non-zero element of ¢,. By the
conjugate sequence of (ax)ren we shall mean the unique sequence (8x)ken €
Sy, which satisfies >, arBr = (3 lax[P)/P.

(b) We introduce the following general terminology, which will be used
repeatedly in the sequel. Let (X, (e,),) be a Banach space with a shrinking
basis, let (z)7, be a block sequence in X and (g;)_, a block sequence of
(ef)n in X*. For k=1,...,m we say that 2, is split by the sequence (g;)%,
if the set

Ap={l=1,...,d:ranz; Nrang # 0}
has at least two elements. If on the contrary the set Ay is a singleton and
Ay, = {l}, then we say that zy is covered by g;.

PROPOSITION 2.9.  For every block sequence (x,)rcr in X(,) we have

S a | <a (Z ||xr|”> "

reF reF

(2.1)

Moreover, if the sequence (2, )rer 15 Sn,, admissible for some j € N, then

1/p
(2:2) n;j<2||mr||f°> <X

reF rel

In particular, X,y is an asymptotic £, space.
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Proof. Let (z,).cr be a block sequence. To prove (2.1) we show by induc-

tion on n that, for every f € K™,
1/p
<i(Twr)

(23) ‘f <Z :c)
rcA

reF

where A = {r : supp f Nranz, # 0}. It is clear that if (2.3) holds for
every f € K™, then the same holds for every f € D". (2.3) is trivially
true for every f € K°. Assume that it holds true for every f € D™ and let

f= m%jz;i:lﬂlfl € K"l j e N. We set
Fy={reA:z, issplit by the family (f;){_,} and F; = A\ F>.
For every | < d we set
Gy ={r € Fy : supp f; Nranx, # 0}

and
I={l<d:G #0}.

Then, since for every r € FY, ranx, Nsupp f; # ) for at most one I, from the
inductive hypothesis and the fact that 4% < 1 for every j, we get
J

d
@4)  |—3 6 (Z a:)‘ - LIS (Z x>|
mj i3 reF M e red,
1 1/p
<> Iol-4 (Z |xr|”>
J el reG,

IN

1/p
(z ||xr||p> |
refF;

B, ={l<d:supp finranz, # 0} .

For every r € F, we set

Notice that #(B;, N B,,) <1 for r; # r9 € F5. From Remark 2.7 we get

1/q

< Susl) el

leB!,

L

m;

> Bifila)

leB,

where B, is the smallest interval of the form [2n — 1, 2m] which contains B,..
It is easy to see that for every I € N there exist at most three r € Fy such
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that I € B/, and hence by Holder’s inequality,

1/q
1
(2.5) > p— S Bfila)| <> [ D 11 [E]
reFy 7 IEB, re€F, \IlEB.
1/p
<3 (Z IIwrllp> :
reky

From (2.4) and (2.5) it follows that

d d
’f(z@ <L Zﬁzfz(Z%)) LS an (Zm)‘
reA mi = ref mi = refy,
1/p
s4<2 ||xr||P> .
rekl

For the lower estimate, let € > 0, let (5,),cr be the conjugate sequence of
(|z+)rer, and let f. € D be such that f.(z,) > (1 — &)||a.|| and ran f, C
ranz,. It follows that the sequence (f,)rcr is Sp,;-admissible and hence

/= %% >rer Brfr € By . Therefore,

1/p
doa > f (Z am) = mlz] Y Befrlw) = (1—¢) (Z wl”) ,

reF reF reF reF

and since £ was arbitrarily chosen, (2.2) holds. O

For p = 1 it was proved in [2] that the space Xy is reflexive. For 1 < p <
00, every asymptotic £, space is reflexive and its dual is asymptotic ¢,, where
% + % =1 (see [18]). In particular, for our spaces we have:

COROLLARY 2.10. Let 1 < p < oco. Then X, is a reflexive Banach space

and its dual space X(*p) is asymptotic £y, where q is the conjugate of p. In

(*p) ’

1/aq
< my (Z ||fz‘||q> :

i€F

particular, for every Sy-admissible block sequence (f;)icr in X

; (Z ||fl-||q> " s

i€EF ieF

COROLLARY 2.11. For 1l < p < oo and q the conjugate of p, the spaces
X(*p) and X4 are totally incomparable.

Proof. This is a consequence of the fact that X(,) satisfies an upper ¢,
estimate but does not contain ¢,. Assume on the contrary that there exist
subspaces Z of X (*p) and Y of X, which are isomorphic. By standard ar-
guments, there exist normalized block sequences (fn)n C X7, (yn)n C X(g)
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which are C-equivalent for some constant C. By Proposition 2.9, for every
k € N, we have

k
Z bnyn
n=1

By the same proposition and standard duality arguments it follows that the

*

space X ) satisfies a lower £, estimate so that for every k£ € N,

A 1/q k
n=1 n=1

Therefore, for every (b,) C R and k € N,

1 k 1/4q

n=1

k 1/q
<4 (Z |bn|q> , for every (b,) C R.

n=1

, for every (b,) C R.

<C

k
> buyn

n=1

k
> butn

n=1

k 1/q
<4C (Z |bn|q> :

n=1

which yields that £, is isomorphic to a subspace of X(,. Since, as proved in
Theorem 5.8, X () is an HI space, we have arrived at a contradiction. O

3. The auxiliary space T(,) = T(,)[(Sn,;+1,0/m;);]

As in a series of papers which deal with the construction of HI spaces using
the mixed Tsirelson spaces as frame ([2], [6], [8], [9]), here we also use an
auxiliary space in order to obtain upper estimates for the norm of special
vectors. Our auxiliary space is the space T(,) = T(,)[(Sn,+1, = );], where
0 =44, '

We fix p > 1 and define the spaces T(,) = T(p)[(Sn;+1, %)J] and, if p > 1,
Z =T[(Sn;+1, (mij)p)jL via their norming sets B(,) and W, respectively.

Let g be the conjugate exponent of p. We set B(,) = U,_yB" and W =
U,—o W™, where the sequences (B™)22, (W™)52, are recursively defined as
follows:

B =W° = {4¢;: €N},

and forn=0,1,...,

d

0

Bt = {m,-zﬂifii JEN, deN, (B)L, € By, fi€ B" fori<d
J =1

and the sequence (f1, fa, ..., fa) is Sp;41 admissible}
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and

0 \" &
Wn+1:{<> Z‘gi: JeEN, deN, gge W" fori=1,2,....d

L -t
and the sequence (g1, g2, --,9d) I8 Sp;+1 admissible} )

The space T, is defined to be the completion of cog endowed with the norm

2]y =sup {f(z) : f € By}

and the space Z is the completion of ¢yg endowed with the norm
2]l z = sup{g(x) : g € W}.
The weight of a functional f = -2 Z?Zl Bifi € By is defined as w(f) =

m;
%4 and, similarly, for g = (mij)p ¢ gi € W, we define w(g) = (% )P.
The next lemma states in particular that 7}, is the p-convexification of Z.

LEMMA 3.1.  For every x = Zk axer € cog with ai > 0 and every f € B(p)
(respectively, W) there exists g € W (respectively B(,)) such that w(f)? =

w(g) and
1/p
(3.1) ‘f (Z akek> <lg (Z aiek> ,
k k
respectively
1/p
<

/()

1/p

/(3]

E AK€l
k

Proof. We shall prove by induction on n that for every f € B™ there exists
a functional g € W™ such that supp f = supp g, w(f)? = w(g) and

1/p 1/p
\f (z) ’ (z) e
k k k

<
For f,g € B® = WY the conclusion is trivially true. Assume that it holds
true for every f € B™ for some n > 0. Let f = -2 3. B fi € B"*!, where
J

(fi)ica i8 Sn, y1-admissible, (8;)ica € By,. Fori € A, set I; = supp xNsupp f;

As a consequence,

(p)

(3.2)

E aiek

k

Z

<

Z
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and choose g; € W™ to satisfy the inductive hypothesis for f; and z; =
ZkeFi arer. Then we get, for appropriate ; = £1,7 € A,

)2 ()

€A keF;
0
< EZW” |gi <Z aﬁek) M
7 icA kEF;
1/p
0
< (Sen (X))
m;j i€cA kEF;

o \P 1/p
J i€A kEF;
1/p
g<za£ek>
k
0

where g = (-2-)P > ;4 €i0i € Wt since, for e; = +1, g;9;, € W™ and (g;)ica
J
is Sy, y1-admissible.
The proof of the symmetric statement is similar. O

Let us recall that we have set v(j) = [3plog,(m;)] + 2 and by the choice of
the sequence (n;); we have v(j)(n;—1 + 1) < n,.

DEFINITION 3.2 (Basic p-special combinations). Let e > 0 and j € N,
J = 2. A basic combination ), - axex is said to be an (g, j) basic p-conver
special combination ((g,7) basic p-convex s.c.), if it satisfies:

(1) Fes,.
(2) ay is a positive real for every k € F and ), _paf = 1.
(3) For every P € S,(j)(n;_,+1) We have that (3, p ai)l/p <e.

REMARK 3.3. Ife >0, j € N with j > 1 and L € [N] with minL > 32,
then for each n € N with v(j)(n;—1 + 1) < n < n; there exists an (e, j) basic
p-convex s.c. » ;- pager with F' C L and, moreover, F' € S,.

Indeed, it was shown in Proposition 2.3 of [8] that there exists an (P, j)
basic 1-convex special combination Zke rbrer, where F' is the maximal S,
initial segment of L. Setting ay = b,l/ P
P-CONVEX S.C.

we see that ), arey, is an (e, j)-basic

The next proposition gives estimates for the action of functionals on p-
convex special combinations of the basis.
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PROPOSITION 3.4 (Estimates on the basis of T(;,)). Lete >0 and j € N
with j7 > 1 such that ¢ < mij, and let © = ), pageg be an (¢,7) basic
p-convex s.c. Then:

(i) For every f € By

e if f = +e:,
0
262

mim;
and thus | f(z)] < %. It follows in particular that ||z|| = -£-.
J J
1

(ii) If ¢ < —5 and the functional f € B, has a tree analysis Ty =
J
(fo)aeT with w(fy) # m;/0 for all a € T, then |f(z)] < %.
J

Proof. Let ), . arer be a p-convex special combination and let f € B,).
Then we have that ), abey is an (7, ) l-special combination and from
Lemma 3.1 there exists g € W with w(f) = w(g)*/? such that

l/p
| ( akek) ( ! 6k>
keF keF

So it is enough to prove the result for the 1-special combination ;. ajep
in the space Z. The proof of this is given in Proposition 3.19 of [8] and we
omit it. O

<

4. Special vectors and the basic inequality

In this section we shall define the p-convex special combinations and the
rapidly increasing sequences (R.1.S.), and we shall prove that we can compare
the action of a functional on an R.I.S. to the action of a functional of the
auxiliary space on a p-convex special combination of its basis (basic inequality,
Proposition 4.9). The basic inequality will be an essential tool in the proof
that the spaces and their duals are HI as well as in the proof that cg is finitely
disjointly representable in these spaces.

DEFINITION 4.1 (p-convex special combinations). Let e > 0 and j € N
with j > 1, and let (zx)ren be a block sequence in X.

(a) A p-convex combination x = ), apx) of the sequence (2 )ren is
called an (g,j) p-convex special combination ((g,j) p-convex s.c.) of
(wx)ren if, for rp = minsuppxy, k €N, Y7, o are,, is an (g, j) basic
p-convex special combination.



ASYMPTOTIC ¢, HI BANACH SPACES 781

(b) If, in addition, the sequence (z)ren satisfies ||z || < C for all k, and
there exists a functional f € D with f(z) =1 and ran f C ranz, then
we say that ), _parzy is a C- seminormalized (e, j) p-convex special
combination of (xy)ren.

REMARK 4.2. Let (zx)ren be a block sequence in X(;), and let € > 0 and
j € N with j > 1. Then, for every n € N such that v(j)(nj_1 +1) <n <mn;
there exists an (e, j) p-convex s.c. ), paprg with the additional property
{minsuppzy: k€ F} €S,.

Indeed, if r, = minsuppzy for £ = 1,2,..., then by Remark 3.3, there
exists an (g, j) basic p-convex s.c. ), paxey, with {ry: k€ F} € S,. Thus
> ke GkTr is the desired (g,7) p-convex s.c.

The next proposition ensures that for every A > 2 there exists a A-semi-
normalized (g, 2j)-p-convex s.c. in every block subspace.

PROPOSITION 4.3.  Let (zx)ren be a normalized block sequence in X,
and lete > 0 and j € N with j > 1. Then, there exist a block sequence (yi)ren
of (xr)ren with |lyx| < 1 for all k and an (g,2j) p-convex s.c. ) ,cp aryr
with the following properties:

(1) I X er anyrll = 3-
(2) The family {yr. : k € F} is Sy(2j)(na;_1+1)+1 admissible.

1t follows that for every A > 2 there exists a \-seminormalized (g, 2j)-p-convex
s.c.

The proof appears in [2] and [8] for p = 1, so we omit it. The next
proposition is the dual of the above proposition. It will be an essential tool
in the proof that X (*p) is HI as well as in the result concerning the structure
of the space of operators on X(,).

PROPOSITION 4.4.  Let (})ren be a normalized block sequence in X[,
such that xj, € D for all k, and let € > 0 and j € N with j > 1. Then, there
exists a finite block sequence (yi)rer of (¢} )ren such that:

(1) There exists (Bx)rer € Be, such that ), . p Bryj is an (€, 27) q-convex
special combination, i.e., if r, = minsuppyy, then ), _p Brey, is an
(e,24) basic g-convex special combination.

(2) The set {minsuppyy, : k € F'} is a mazimal Sy(2j)(ny;_,+1)+1 St

(3) We have [lyz]l > 1/2 and || Sy vl < 1

Proof. Assume the contrary. We set 7 = 7(25)(ngj—1 +1) + 1 and m =
logy(ma;) + 1 and observe that m > 2 and mr < ng;. We proceed by con-
structing, for every [ = 0,...,m, a block sequence (f})ren of (z})) satisfying
the following conditions:
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(i) Foralll >1and k €N, fl = Ziecﬁc Bif 7t is an (g,27)- g-convex s.c.
l—
of (f; 1)16%.
(ii) The set {minsupp f/~! : 7 € GL} is a maximal S, set.

(iif) 271 < || L]l < mg; for 1 <1 < m and all k.

After the completion of the inductive construction, (iii) yields that 21 <
mg; which contradicts the choice of m.

The construction is done by induction on [. We set f,g = zj, for all k.
Suppose that the sequences (ff)ren, s < I — 1, have been chosen to satisfy
the inductive assumptions. From Remark 4.2 we may choose a block sequence
(f1)x such that, for each k, fi = ZiGGL ﬁifil*l is an (g,2j) g-convex s.c. of
(fil_l)ieN and {min supp fil_1 i € GL} is a maximal S, set.

By our inductive assumptions (i), (ii) and the definition of f} we get that
each fl may be written as f. = ZieF,ﬁ ~vizy, where the set {minsuppz} :
i € Fi} is S maximal and (vi);epy € By, Since Ir < npj we get that
{minsuppz} : i € F}} is Sp,, admissible and hence

1Al =11 D2 v || < may.

ieF}

If || fL]] < 2'=! for some k, then we get

> B (2111le1> <1

el
ieGy,

By our inductive condition (iii) we also have || 5 fI7Y| > 4 for all 4. This
leads to a contradiction since we have assumed that the proposition is not true.
Therefore, ||fL]| > 2!~! for each k. This completes the inductive construction

and the proof of the proposition. O

PROPOSITION 4.5. Let C > 0. Let (x1)ren be a block sequence in X,
with ||zg|] < C for each k, let 1 < j € N, and 0 < ¢ < 1/3m; and let
T =) cparTy be an (g,7) p-convex s.c. Then for every i < j and

1 d
f=—> BfeK

(oo ()

rel
where I is the smallest interval of the form [2n — 1,2m] which contains {r <
d:ran f, Nranx # 0}.

we have

5C
< —
m;

T
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Proof. Fix i < j,let fi < foa <--- < fq be an S,, admissible sequence in
D and let (3,)¢_; € By, be such that

f= mi(ﬁlfl ~+ Ba fo +"'+,6dfd) c K.

Let I be the smallest interval of the form [2n — 1,2m] which contains {r < d:
ran f, Nranz # 0}.
We set

Fy ={k € F: xy is split by the family (f,),cr} and Fy = F\ F».

Using the fact that X, satisfies an upper /,-estimate (Proposition 2.9) and
setting
D, ={k € Fy : ran f, Nranxy # (0}

for r € I, we get

d
(4.1) (Z ﬂrfr> (Z akxk>‘ = 1> Bty (Z akxk>
r=1 kEF rel kED,
1/p
<> 16,4 ( > ||akxk||p>
rel keD,.
1/q
<%«Zm@ ,
rel

where the last inequality follows from Holder’s inequality. To estimate the
action of f on Zk€F2 arTr, we set I = minsupp x for each k& and observe
that minsupp x; > 2. For each k € Fy we choose ry, € {1,2,...,d} such that

min supp zx < minsupp f,, < maxsupp .

Since {minsupp f : r = 1,2,...,d} € S,,, it follows that {minsupp f;, :
ke Fy} € S,,, and thus {ly : k € F» \ {minF>}} € S,,. So the set
{lp : k€ Fy}is S,,+1 admissible. Since n; +1 < v(j)(n;—1 + 1), we get that
{lk : k€ Fa} € Sy(j)(n;_,+1)- The fact that >, - agzy is an (¢, j) p-convex
s.c. yields that Y7, . af < eP.

For every k € Fb, let

Ap={rel:ranf. Nranzy # 0}.

It is clear that A is an interval. Hence, letting A;C be the smallest interval of
the form [2n — 1, 2m] which contains Ay, it follows from Remark 2.7 that
1/q 1/q

< S Bl] ed<c| 180

reAl reA}

@2) | 3 efilmn)

v reAy




784 IRENE DELIYANNI AND ANTONIS MANOUSSAKIS

Since every r belongs to at most three A}’s, by (4.2) and Hoélder’s inequality
we get

1/q
d
(4.3) |<Z ﬁrfr> (Z akxk> < m;C Z ay Z 18]
r=1 kEFsy keFs rEA;C
1/p 1/q
keF> rel
1/q
= (Ssz '6) (Z |ﬁr|q>
rel
1/q
<C (Z |W> :
rel
From (4.1) and (4.3) we conclude that
d 1/q
<Z 67'](7") (Z ak$k> <5C <Z |ﬁr|q> .
r=1 keF rel
This completes the proof. O

DEFINITION 4.6 (Rapidly increasing sequences). Let C' > 0 and (ji)ken
be an increasing sequence of positive integers. A block sequence (zy)ren in
Xpy is a (C, (jir)ren)-rapidly increasing sequence (R.LS), if the following are
satisfied for every k € N:

(a) [lzell < C.
(b) m_l (max supp zy) < ﬁ
Jk+1 Tk
(¢) For every i < ji and every f € K with w(f) = m;, we have
[f(@r)] < e

REMARK 4.7. Let (z)ren be a (C, (jk)ken)-rapidly increasing sequence
and k € N. Note that if i < j, and

1
f:EZﬁTfT€K7

<Z |ﬂr|q> " :

rel

then by Lemma 2.6 we get that
C
<
|f(zi)| < m

where I is the smallest interval of the form [2n — 1,2m| which contains {r :
supp fr Nranzy # 0}.
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PRrROPOSITION 4.8 (Existence of an R.1.S.).  Let C > 0 and (z;); be a block
sequence in X ) with ||z]| < C for every I. Suppose that (ji)ren is a strictly
increasing sequence of integers and (Tr)ken 48 a block sequence such that each
xy s a (1/3my, , ji)- p-convex s.c. of the sequence (z;);. Then there exists a
subsequence (xy, )n of (zk)r which is a (5C, (jr,)nen) R.LS.

Proof. Choose a subsequence (xy,, ), of (x);, such that mj, maxsupp(zg, )
< my, . for all n. From Proposition 4.5 we get that the sequence (y,)n
satisfies condition (c) of the definition of the R.I.S with constant 5C. Therefore
this subsequence is a (5C, (ji, )n) R.LS. O

PROPOSITION 4.9 (The basic inequality). Recall that we have set § = 41/
and that By is the norming set of the auziliary space T(y). Let (xx)ren be a
(C, (jk)keN) R.I.S. in X(p) Then:

(a) For every sequence () of scalars and every f € K, we can find
functionals g1 and g2 in coo, such that either g1 = hy or g1 = e + hy
with v & supp hy, where hy € convolh € By : w(h) = w(f)/0}, while
lg2lle, < %h, such that

(4.4) ‘f (Z Akzk)‘ < C(g1 + g2) (Z \)‘k|@m) ;

where r, = minsupp xx for each k=1,2,....

(b) If in addition we assume that there exists jo < j1 — 1 such that,
for every ¢ € K with w(¢) = mj, and every interval E of natural
numbers, we have

(4.5) ‘¢> (Z )\kxk>

keE

1/p
1
< p
<C r]?ea§|)\k|+m' (E |>\k|> .

Jo+1 keE

then hy may be selected to have a tree analysis (hy)ier with w(hy) #
% for all t € T but this time the functional go satisfies

lg2lle, <

= Mmjgt1’

The proof of the basic inequality is an adaptation of the proof of Proposition
4.3 in [8] and we omit it.

PROPOSITION 4.10. Let C > 1, let (zp)ren be a (C, (ji)ren) rapidly in-
creasing sequence in Xy, j € N with 1 < j < ji1 and e > 0 with ¢ < #

(1) Let Y cparzr be an (g,j) p-convex s.c. of the sequence (xy)ren-
Then:
(a) For every f € K with w(f) < m; we have

‘f (Z akxk) 33C
keF

= w(f)m;’
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(b) For every f € K with mj < w(f) we have

(el (s e5)

In particular,
< £

(4.6)

g ATk

keF

(2) If the sequence (cx)ker is such that Y, p |cklxy is an (g, j) p-
convez s.c. and assumption (b) of the basic inequality is fulfilled
for jo = j and for the linear combination ), . p ckTr of (Tr)ren,
then

< -

3
mj

CkLk
keF

Proof. For the proof of (1a) and (1b), let f € K. It follows from the basic
inequality that there exist hy € convg {h € B, : w(h) =w(f)/0}, r € N,
with 7 ¢ supp b1 and gz € coo with ||galle, < % such that

1

‘ (Z) Ol +ep) + ) (Z)

keF

<
<C <h1 (Z ak@m) +maxay, + llgzll,, (ak)k”zp)

keF

2
<C|lh E r )
< <1< akek>+€+mjl>

keF

where r,, = minsupp zy for each k. From Proposition 3.4 we get
33C
C( 267 +%)§7 if w(f) <m,,
w

(5
keF w(f)m; = m] (f)m;

since § = 41/9. From (4.8) we get (1a) and (1b) and moreover || Y oker Tl <
5C
mij.

We now pass to the proof of (2). Let f € K. Assume first that w(f) # m;.
Since the linear combination ), - . cx 2y satisfies assumption (b) of the basic

inequality for jo = j, we may choose h; and go to satisfy

f <Z ckmk> <C <h1 (Z |Ck|€rk> +max|ey| + g2 (Z Ck%)) ;
keF keF keF

4 2C
0 2 .
C(m(f)*@) SWf)erije if w(f) = my,
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assuming in addition that hy has a tree (f;)ier with w(f;) # % forallt € 7.
Using Lemma 3.4(ii), we conclude that

(o)

The case w(f) = m; follows immediately, since our assumption that part (b)
of the basic inequality is satisfied implies that

1/p
1
‘ keF Mi+1 \jep

1 1 2C
<C|=5+ <.
mj mj41 mj

20 10C
<C(—=3+tetlol, | <—5-
m3 a m

J

<C m]?x|ck| +

This completes the proof of (2). O

5. The space X, is hereditarily indecomposable

DEFINITION 5.1 (Exact pair). Let C > 33 and j € N. A pair (z,¢) with
r € X(p) and ¢ € K issaid to be a (C, 25) exact pair if the following conditions
are satisfied:
(i) There exist a (&, (jr)x)—R.LS. (yx)r with 2j < ji and |yl > 1,
for every k € N, and a (m%,Zj) p-convex s.c. » . pGpYk such that
2
T = Maj ZkeF apYk-
(i) w(¢) = ma;.

(iii) ¢(z) =1 and ranz = ran ¢.

REMARK 5.2. Let C > 33, j € N, and let (z,¢) be a (C,25) exact pair,
and let ¢ € K with w(v) = m; # ma;. Then, by Proposition 4.10, we have:
(a) 1< |z|l < C.
(b) If ¢ < 24, then |¢(x)
(c) If i > 27, then |9 (x)

a3

| <
| <

5.

mzj

PROPOSITION 5.3. Let j =2,3,... and C > 330. Then every block sub-
space of X(p) contains a (C,2j)-exact pair.

Proof. Let (x1)ren be a block sequence in X,y and A = % > 2. Tt follows
from Proposition 4.3 that there exists a block sequence (zg)ren of (Tk)ren
such that, for every k, 2 is a A-seminormalized (m%, 2k) p-convex s.c. (see

2k

Definition 4.1 (b)). In particular, for every k, ||zx| < A and there exists
z; € D with z;(z) = 1 and ran z; C ranz. Using Proposition 4.8, we may
pass to a subsequence (yx)r of (zx)r which is a (5, (25 )ken) R.IS. for an
appropriate sequence (jx ).
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Now let y = >, cparyr be a (#;,2]’) p-convex s.c. of (yg)r. For every
J

ke F,let yi € D with y;(yx) = 1 and rany;, C rany, and let (Gx)rer be the
conjugate sequence of (ay)rer. We may assume that Jj is rational for every
k€ F. Then ¢ = #21 > ker Bryy, belongs to K and ¢(y) = ﬁ% After a small
perturbation we may also assume that ran¢ = rany. So setting x = mo;y,
we get that (z,¢) is a (C,2j) exact pair. O

LEMMA 5.4. Let C > 33 and let i, and (ji)5_, be positive integers with
i+ 3 <251 <22 <o < 24 Let (xr)i—y C Xy, (1)jeq C X(,) be block
sequences such that, for every k <r, (zg, ¢r) is a (C,2j) exact pair. Suppose
that, for some d € N, (fl)f:1 is a Sp,-admissible sequence of functionals in
K such that i 4+ 3 < w(f1) < --- < w(fq) and w(f;) # maj, for everyl < d
and k < r. Then, for every choice of coefficients (cx)s_,, and (B;)i, with

(ﬂl)ldzl € By,, we have
T 1/p
C
< <Z |ck|p> :
k=1

d T
(5.1) ‘(Z ﬂzfz) (Z ckwk> :
=1 k=1 Mit2

Proof. We start with the following remark which is needed for the proof of
Lemma 6.2: The result of the lemma remains true if the assumption that each

(zk, o) is a (C,2jk) exact pair is relaxed as follows: For every k = 1,...,r,
xy, satisfies condition (i) of Definition 5.1 for j = ji. In other words, the
functionals ¢, k =1,...,r, do not play any role in the proof.

Set

d
J= {kz :ran(xg) N (U ran(fl)> + (Z)} .

1=1
We partition the set J into two sets F' and G as follows:

G = {k € J : z, is split by the sequence (fl)le} and F=J\G.
We first consider ZkeF cyxk. Foreachl=1,...,d, let
Fy={k € F: x is covered by f;}.
Suppose that

1
fi= m Z vihi,

I€EA;
where w(f;) = my,, (hi)ica, is a n,,-admissible sequence of functionals in D
and (7;)ica, € By, . Partition the set Fj as follows:

F' = {k € F} : x} is covered by some h;, i € A},
F? = {k € Fy : 1, is split by the sequence (h;);ca, and w(f;) < maj, },
FP? = {k € F; : 2}, is split by the sequence (h;)ica, and maj, < w(fi)}.
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We first turn to the set U;izl Fll. If we set, for fixed [ and i € A;,
B; ={k € F/' : @, is covered by h;} ,
then using Proposition 2.9 we get

1
<MZ|W|

1EA;

=
(9}
x>
3
ol

|

hi (Z ckxk> ‘
keB;
e, e
P (Z |ck|p>

P€EA; keB;
1/p

4C ,
= w(f1) Z e ’

keF}
where the last inequality follows by Holder’s inequality. It follows that

1/p

d d
(5.2) SBifi| Y e || < 402|m|ﬁ > Jerl?
=1 =1

keF} keF}
1/p
4C
AN
1 keU, F}
We now turn to U;l:l F?. For fixed [ = 1,...,d and each k € F?, we set

Ry ={i€ A;:ranh; Nranzy, # 0}

789

and we let Ry be the smallest interval of the form [2n — 1,2m] which contains
Ri. Note that each i € A; belongs to at most three Ry’s. Using this, for

k€ F2 w(fi) < maj,, as well as Remark 5.2(b) and Lemma 2.6, we get

Al D0 e || <D lel ﬁ (Z %M) (zk)

keFp? keF? i€Ry,
1/q
C
<= > el | Dl
w(fl) kEFlQ iERk
1/p

3t/ac
< —— Z |ex|?

w(f1) here
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It follows that

1/p

d 3l/aC
(5.3) Zﬁzfz Z ez || < Z|ﬂl|m Z |cx”
=1

keF? =1

Next we turn to U;lzl F3. If k € F? for some | = 1,...,d, then by Remark

5.2(c) it follows that |f;(xg)| < m%‘ . Hence,
251,
d d c
B4 DB D e || D181 ekl
=1 keF? =1 keF? 27k
d 1/q 1/p
1
SO B > — > lewl”
=1 keF}? M2y, keF}?
1/p
oo
e I
Ayt keF}?
1/p

IA

C
> el
maj,

kel, F?
Finally, we turn to the set
G = {k € J : zy, is split by (fl)le}.
For every k € G, let
Lpy={l=1,...,d:ran fyNranxzy # 0} .
We partition Ly into
My ={leLy:w(fi) <mgj} and Ny =Ly \ M.

From Remark 5.2(b), we get |fi(zx)| < ﬁ for every | € Mj. So, for fixed
k € G,
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Z Buifilzr)| < C Z |5z

leM;, leM;y,

1/q 1 1/p
sc(Z Iﬁzq> (Z w(ﬁ)p>

le My, le My,

1/q
, 20
() <

le My,

where [}, = min Mj,. It follows that

1/p 1/q
> ek (Z ﬂzfz) xp)| < 2C <Z Ckp> (Z (;)q> :
keG rec U\l

keG le My,

Note that [} # I}, for k # r in G. Hence

(Sei) < T

keq j>i+3 m;j Mits
So,
1/p
(5.5) > ek (Z ﬁlfl> < (Z |ck|p> .
keG le My, keG

Now we consider the set IV}, for fixed k € G. Let x = may;, Ztelk asys,

where >, ayy; is a (=—,2jx) p-convex s.c. of a (33,( it)t) R.ILS. (y): as
2 k

in Definition 5.1. We set

T = {t € I} : y: is split by the family (f;)ien, }
and, for [ € N, we set
Jy={t €I} : fi covers y: } .

Since the family (f;), is S,,-admissible, it follows that the family (y;)ier
is Sy, +1-admissible, and since i + 3 < 23, we get

1/p ]
Z al < ——.
255,

teT

Note also that the functional m% 27:1 01 fi may not belong to BX(*p) (if 7 is
odd), but

27:1 0B fi does belong to BX(*m' Using also Proposition 2.9

mMi+1
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and the fact that ||y:]] < C, it follows that

1/p
(5.6) ’(Z @fz) (Z m2jkatyt> < ACmip1may, <Z|at|p>

lEN}, teT teT

4C’mi+1m2jk < C

3 e
Maj, mM2jy,

It remains to estimate > ;.. Bifi(D_c s, atye). By the basic inequality,

Z Bifi (Z atyt> <C Z 161 (hll +€:[ +912) <Z atest> )

lEN}, teJ, lEN teJ;

(5.7)

where s; = minsupp y;, and for every [, supp(h; + ey, + g?) C {es, 1t € Ji},
h} € convg {h € B,y : w(h) = w(f)/0}, r € N with r; & supp hj and [|g7 |,
<2 _ < mé . Since the sets J;, | € Ny, are pairwise disjoint, we get

— mzjk+1 2-7k
1 o
5.8 7 o] < P < :
(5.8) Z Bt (Z age t> =3 <Z |a| ) = 3.
LEN, ted; 20k \teuJ, 29k
Notice also that the set {ey, : [ € N} is at most Sy, 1-admissible, so, since
D ier, Qies, is a (—3—,2ji) p-convex s.c., it follows that
27
. 1
(5.9) §]m%<2%%><w‘
IEN, teJ; 2Jk
Moreover,
6 1
(5.10) §jmw<ZM%><2NmM”<ezuﬁ)
IEN, ted; IEN, ! ten; Ut
<0y <
J>2jk M M2

Therefore, by (5.7), (5.8), (5.9) and (5.10), we get

2 4 5C
|<Z ﬂzfz) <m2jk > at%) < COmay, <m3 T3 > < :
IEN,, teuT,

2jn M2, m2jy.
Combining this with (5.6), we get

‘(}jmﬁ>@w

LEN},

6C

27k

<
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So,
1 1/q 1/p
(5.11) Z Cl (Z ﬂlfl> (zx)| < 6C <Z 7 > (Z |Ck|p>
ke@ IEN,, kee 2k keG
1/p
6C
< Slel?)
mi+3 keG

Combining this with (5.5), we conclude that

() (el )

M
keq@ *3 \kea

Set now

5_4+3+1+8<9<1
w(fi)  w(fi) mag, m;43 M43 mi+2'

It follows from (5.2), (5.3), (5.4) and (5.12), that

This completes the proof of the lemma. O

DEFINITION 5.5 (Dependent sequence). Let j € N, d € N and C > 33.
A double sequence (zy,z})3L, with z, € X(;,) and z} € K is said to be a
(C,2j + 1) dependent sequence if there exists a sequence (2j;)%%, of even
integers such that the following conditions are fulfilled:

(1) (z3)24, is a (0,24 + 1)- sequence with w(z}) = my;, for all k < 2d.
(ii) Each (zg,xy) is a (C,2jy) exact pair.
(iii) There exists a sequence (a;)%, of positive numbers such that

Zle a;(rai—1 + T9;) is a (—1—,2j + 1) p-convex s.c. of (z1)2%,.

maj42

ProrosITION 5.6. Let j € N and C > 330. Then, for every pair of
block subspaces Y1,Ys of Xy, there exists a (C,2j + 1) dependent sequence
(2, z,t)i‘il with To;_1 € Y1 and x9; € Ys for alli=1,...,d.

Proof. By an inductive application of Proposition 5.3, we can choose a
double sequence (z,x})72; satisfying the following: (zx)52, is a block se-
quence with xo; 1 € Y7 and z9; € Y5 for all 4 = 1,... and each pair
(g, xy) is a (C,2jk) exact pair, where 2j; > 4j + 6 and, for all k& > 2,
2 =o(xf,...,x5_4)

By Remark 4.2 there exist d € N and a (5——,2j + 1) p-convex s.c.

2majt2
2d . bP. +bE.
S bexk. Fori=1,...,d, we set a; = (“2=1—2)1/P,
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It follows that (z})2L, is a (0,25 + 1)-sequence and 2?21 a;(T2i—1 + 2;)

is a (m21_+2,2j + 1) p-convex s.c. of (x1)22,. Hence the sequence (zy,2})¢_,
J

is the desired dependent sequence. O

PROPOSITION 5.7.  Let j,d € N and C > 33. Let (zy,x})2L, be a (C,2j+1)
dependent sequence and suppose that the positive coefficients (a;)%_, are such
that E?Zl a;(Toi_1 + x2;) is a (=—,2j + 1) p-convez s.c. Then

moj+42
d
10C
E a;i(T2i—1 — T2;) —3 -
i=1 Mojt1
Proof. To simplify notation we set co;—1 = a; and co; = —a;, for ¢ =

1,...,d, so that
d 2d
D ai(waion — x2) = Y
i=1 k=1
Since (z7)34, is a (0,25 + 1)-sequence (Definition 2.2), it follows that
M2jyyy = Mo(as,...xr) > Maj, - MAXSUPP Tf, = Maj, - MAX SUPP Tk, .

From the definition of exact pairs (Definition 5.1) and Remark 5.2 it follows
that

lzi|| < C and |f(zg)] < w?f) for every f € K with w(f) < maj, .
Hence (z1)2%, is a (C, (24, )ken) R.LS. (Definition 4.6).

The conclusion will follow from Proposition 4.10(2) provided that we show
that assumption (b) of the basic inequality (Proposition 4.9) is satisfied by
jJo = 27 + 1 and by the linear combination ZZ‘L crTr. We need to show that,
for every interval E and for every ¢ € K with w(¢) = mgji1, we have

l/p
|() <Z Cijk) (Z |Ck| >
ker kelE

Let ¢ € K with w(¢) = mg;41. Then ¢ has the form

1 * *
6= ——F (i@} +3) +92(2 +23) + -+ (3,1 + 735,)+
maj+1

< C' | max |ck| +
keE

1
M2+

Y1 (fore1 + forg2) + - +Ys(fos—1 + f2s>) ;

where (21/‘1%)?:1 € By, x1,25,...,%5,, fory1, for, .., fos 15 a (0,2) + 1
sequence, F' is an interval of the natural numbers and either r = d or 0 < r
d — 1 and one of the following three cases holds:

(@) 7> 1, w(fors1) = w(xs,) and forp1 # 25,4 -
(b) rz 07 f27“+1 = x;r-&-l’ w(f2T+2) = ’LU(SL‘;T+2) and f27'+2 7£ x;r-{-Q'

)-
<
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(¢) » =0 and f; # zj. In this case, it follows from the definition of
(0,25 + 1) sequences that w(f1) > majt6.

Let E C {1,...,2d} be an interval of integers. Without loss of generality
we may assume that r» > 1, F = [m, 0c0), where m € ranzj,_; for some ¢t < r
and that [2¢ — 1,2r] C E. The other cases are treated similarly. We have the
following estimates:

(i) For k <2t —1, ¢(xx) = 0.
(i) [p(2—1)| = ——|ye||[Fah,_y (par 1) < Sl

majy1 el moj41
vt

(i) |¢(@2e)| = 7y Ivelade(war) =

majt1 majy1”

(iv) Fori=t+1,...,r,

¢(02i71x2i71 + C2ix2i) = ai(b(x%fl - x2i)

1 N "
= aiYi (31 (x2i-1) — 25;(22:)) = 0.
Mo 11
(V) |p(z2r11)| < 75— and [¢(22r42)| < 77— by Remark 5.2 on exact

maji1 m2j+1

pairs.
(vi) Finally,

2d s 2d
¢< Z Ckl'k> _ 1 <Z 'Yi(fQi—lJFfQi)) ( Z Ckfl?k>7

T
k=243 25+ \i=r11 k=213

where, for 2r+3 < k < 2d and 2r+1 <1 < 2s, we have w( f;) # w(z})
by the injectivity of the function o. It follows that the sequences
(z1)3L,, 5 and (f1)72,,,, satisfy the assumptions of Lemma 5.4 with
i =27+ 1. So, for the given interval F, we get

o Y || = ! <Z 7i(f2i1+f2i)> > ok

Mos
ke E 25+ | \i=r 1 ke E
k>2r+3 k>2r+3

1/p
c § p
S ey, k] ’
27+17110254-3 keE

Combining (i)—(vi) we conclude that

1/p
4C C
g CLT < max |e| + E c|?
|¢ (kEE ’ k) M2j+1 k€E| . < o >

moj+3 keE
1 1/p
< C | max|ck| + Z lek|P
keE maj4+3 heE

This shows that assumption (b) of the basic inequality is satisfied by the
sequences (7)<, and (cx)?L, and completes the proof of the proposition. [
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From the above proposition and Proposition 5.6 we get the following the-
orem.

THEOREM 5.8.  The space X(,) is hereditarily indecomposable.

Proof. Let Y, Z be infinite dimensional block subspaces of X(,). Choose
C > 330. By Proposition 5.6 for j € N there exists a (C,2j 4+ 1) dependent
sequence (mk,xZ)iil with z9,_1 € Y and x9; € Z for every i = 1,...,d.
Let Z?Zl ai(w2i—1 + x9;) be a (=2—,24) p-convex s.c of (z3)?L,. Then y =

maj+a
S @iy €Y and z = Y a0 € Z. Let (21/943;)%_, be the conjugate
sequence of (2'/Pa;)%_,. Then —1 Zle Bi(zh,_ +a3%,) € Bx; o

m2j41
1 < d 1
+z|| > Bi(x5;_1 + x5 ai(Toi—1 + x2;) | = .
ly | M2yt ; i (731 5) (; i(w2 i) Maj1
On the other hand, it follows from Proposition 5.7 that
d
10C
ly — 2| = a;(T2i-1 — 2i)|| £ —5— .
; (O

Since j € N was arbitrary, we conclude that X(,) is hereditarily indecompos-
able. (]

6. The dual space X(*p) and the space of operators £(X(,))

In this section we shall present the following results concerning the struc-
ture of X,y, X (*p) and the spaces of operators L(Y, X(;)), where Y is a closed
subspace of X,

(1) For every closed subspace Y of X(;), every bounded linear operator
T:Y — X is of the form T' = Ay + 5, where A € R, Iy is the
inclusion operator from Y to X, and S is a strictly singular operator.

(2) co is finitely representable in every infinite-dimensional subspace of
X(p)- Therefore X, does not contain any uniformly convex subspace.

(3) The dual X(,) of X(,) is an HI space.

An essential tool for the proofs of (1) and (3) is the fact that the set D
is rationally convex, so that Bx» = D”. All results of the previous sections
could have been obtained without this condition. However, the rational con-
vexity of D seems essential in the proofs of the results about the dual of X,
and the structure of the spaces of operators L(Y, X(;)).

The proofs of these results follow the same lines as the proofs of the corre-
sponding results in [3] and [8]. Here we only outline the steps needed in order
to reduce the present cases to the already known cases. For complete proofs
we refer the reader to the corresponding papers.
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We proceed to the first result which concerns the spaces of operators
LY, X(p))-

THEOREM 6.1.  For every closed subspace Y of X, every bounded linear
operator T': Y > X, is of the form T = My + S, where A € R, Iy : Y
X(p) s the inclusion operator and S is a strictly singular operator.

The main step of the proof is contained in the following lemma.

LEMMA 6.2. Let j / oo and (xk) be a block sequence in X,y such that
each xy is a 4-seminormalized ( ,2Jk) p-convex s.c. Suppose that'Y is a

closed subspace of X,y which contams the sequence (xy)r and T Y +— X
is a bounded linear operator. Then

lilgn diSt(Tal‘k, Rzr) =0.

The proof of Lemma 6.2 is based on Proposition 5.3, Lemma 5.4 and part
(b) of the basic inequality, following the steps given in Chapter 9 of [8]. Lemma
6.2 combined with Propositions 4.3 and 5.7 yield a proof of Theorem 6.1
following the ideas used for the analogous results in [15] . We omit the proofs.

Let us note that Theorem 6.1 implies that the space X,y is HI. However,
for its proof we need all the machinery that was used in the proof of Theorem
5.8.

In the next result we show that X(,) is not uniformly convex by proving
that co is finitely disjointly representable in every block subspace of X(,).
More precisely, the following is true.

THEOREM 6.3. For every € > 0, every infinite-dimensional block subspace
Y of X(p) contains, for everyn € N, a sequence of disjointly supported vectors
(yr)P_q which is (1 4 €)-equivalent to the canonical basis of 7.

This theorem is similar to Theorem 1.6 of [3] and we shall only sketch its
proof.

Sketch of the proof of Theorem 6.3. We set § = 41/9 as in Section 3. Fix
n € N and a block subspace Y of X(,). By standard arguments it suffices
to find a sequence (z,)I"_; of disjointly supported vectors in Y which is C-
equivalent to the canonical basis of ¢, where C' =145 - 15 - 75.

Choose integers sg, 9 and jx, k = 1,...,n, such that

ma SoP p . . . .
60n < (7> s Mg >420n  and  spip < j1 < j2 <+ < Jn.

Choose also sequences (t;);eny and (z;);en such that (¢;);en is an increasing
sequence in N with

(6.1) My, > 4nmaj,
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and (z;)ien s a (15, (2t;);en) R.LS. in Y, while each z; is a 3-seminormalized
(é, 2t;) p-convex special combination. Such a choice is possible according
to Plropositions 4.3 and 4.8.

Let {; = minsuppz;, ¢ € N, and let L = {l; :4 € N}. As in the proof
of Theorem 1.6 of [3] we can choose a finite tree 7 of height n, and two
corresponding trees (Ig)ger of integers in L and (ag)ger of real numbers,
with the following properties:

(i) For 1 <r <nand a € T with length |a| = r we denote by S, the set
of immediate successors of a in 7, S, ={f €T :|f|=r+1,a <3}
(< is the natural partial order of 7). Then, if r < nand a, o’ € 7 with
la| = || = r and l, < o, we have: For every 8 € Sq, lo < lg <lu.
(ii) For each r =1,...,n, we set

Uy = E H Gy 615.

BEeT,|B|l=r \v=38
Then, v, is a (——, 24, )-basic p-convex s.c.
9 m b
25

Let (23)per C {z :i € N} be the corresponding tree of vectors, that is,

2g = 2i,, where g = minsupp z;,, for every g € 7.
For each r =1,...,n, we set

Yr = Z Ha.y 23.

BET,|Bl=r \"=B
We have the following estimates:
(i) By Proposition 3.4,

0
Hvr”T(p) = o
(ii) By Proposition 4.10 and the fact that, for each i, 1 < ||z < 3, we
get
< el <~
Mgy, TR =
We set
Yr
Tp=——, T=1...,n,
[lye |
and we show that the sequence (z,)22; is C-equivalent to the canonical basis

of £7.
Let (A;)7—; be any reals. We note first that

n
5 Ary
r=1

1
> — .
= 75 (A
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To see this, fix 79 < n. For every § € T with |8] = ro, since zg is a 3-

seminormalized (—i—,2t;) p-convex s.c. (see Definition 4.1), there exists f3 €
2t;

D with fg(zg) =1 and ran fz Cranzg.
Let pg = [[,<5 ay and take (pg)ser,|5/=r, to be the conjugate sequence of
(18)geT,|8|=ro- Then, the functional

. 1
= slgn(Am)erO ﬁeTZﬁ pafs
5 =ro

belongs to B X:, and

Z ArZr|| 2> <Z )\T-Tr> = <»0(/\7‘r)x7“0)
r=1

r=1
[Aro |
= 0 > psuptsl(zs)
iyl 2
— |)‘To| > i‘)\ |
= > rol-
maj,., |yT0 H 750

For the upper estimate, we use the basic inequality (Proposition 4.9). For
r=1,...,n, we set u, = mvr and we note that

0
75 < ||uT||T(p) <é.
Let f € K. Then, there exist functionals g1, go such that

f (Z >\7’$T> S 15(91 +92) <Z |)\rur> )

r=1
where [|ga||,, < —2— and g either belongs to By € Br,, or g1 = €] +hy for

4 — Moy
some [ € N and h; 16 Bp-
It follows that

n n n n
S ) WPYA I m2 )IIEIT I )y PWITH R ) PN
r=1 Xn) r=1 ¢, llr=1 o llr=1 T
By our choice of ¢; (equation (6.1)), we have mitl < anizjn and since, for
every r =1,....m, [[ur|le, < maj, < may,, we get
2 |& 2 (& o\
p— ; |Ar|ur . = Moe, (Tz_:l |Ar| ”uruep)

IN

n 1/p 1
m2jn p < -
Ima;. (ZIAT ) < g max |Arl-

r=1
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Also, clearly,

& 1
Z|/\T|UT < 5121Tajqn|)\r|.
r=1 00
It remains to estimate || 337, [A|ur |7, - We set, for r=1,...,n,
p

1
wr:W Z HaAY €lg-

BET,|Bl=r \<B
Then, by Lemma 3.1,
1/p

n n
> Arfur > Al
r=1 r=1

But it follows from the proof of Theorem 1.6 of [3] that the sequence (w;)!_;
in Z is 360P-equivalent to the canonical basis of ¢ . In particular,

Tip) z

n

Z Ar[Pwy

< 3667 max |A.|P.
7 1<r<n
r—=

Z

It follows that
3" ks
r=1

We conclude that

1
— <
75 2ax [Ar] <

< 360 max |A\.| <144 max |A.|.
1<r<n 1<r<n

Tip)

i: Ay X

r=1

< 14515 max |Ay|.
1<r<n

So, setting C' = 1451575, (x,)$2 is C-equivalent to the canonical basis of
0. O

REMARK 6.4. Following [3], [4], modified versions of the spaces X,y can
be defined. It follows readily from the definitions that ¢y is not disjointly
finitely representable in the modified spaces. However it is not clear to the
authors whether modified versions of the X(,) spaces can provide uniformly
convex HI Banach spaces.

For the dual space X (*p) of X(,) we have the following result.

THEOREM 6.5. The dual space X(*p) of X () is an asymptotic £, hereditar-
ily indecomposable Banach space.

We saw in Section 2 (Corollary 2.10) that X (*p) is asymptotic £,. The proof
that X7 ) is HI follows the arguments of Chapter 8 of [8], and it is based on
the following two lemmas.
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LEMMA 6.6. Let f € BX(*p) N cog. Then, for every € > 0, there exists
x* € D such that || f — x*|| < e and ran f = ranz™.

Proof. Let f € BX(* ) Necoo and F = ranf Since BX*) = D" there exists
x* € D such that |f(ex) — z*(ex)| < zF for every k € F. Since the set D is

closed under interval projections we may assume that ranxz* = F. Then z*
is the desired functional. O

LEMMA 6.7 Let () be a normalized block sequence in X(,, € >0 and

)

j € N. Then there exist a functional x* € D and a 4-seminormalized (

p-convex s.c. © € X(,) such that, setting Z = ((z};)r), we have:
(i) dist(z*, Z) < e.
(ii) z*(z) =1 and ranz* =ranz.

For the proof we refer the reader to Lemma 8.2 of [8]. We note however
that the main step in our case is Proposition 4.4 of the present paper. We
proceed to the proof of Theorem 6.5.

Sketch of the proof of Theorem 6.5. (See also Theorem 8.3 of [8].) Let Y, Z

be a pair of block subspaces of X(*p)7 0<d<1/10 and C > 330. Let j € N

be such that m2]+1 > 210

By Lemma 6.7 and an argument similar to that of Theorem 8.3 [8], we can
choose a (C, 2j+1)-dependent sequence (zy, z})3™, such that dist(z3;,_,,Y) <
1/2%71 and dist(a;, Z) < 1/2% for every i = 1,...,n

Let x = Y"1 | ai(w2i—1+x2;) be a (1/maji2,2j+1) p-convex s.c. of (zg)3™ .

We also consider the vector z/ = ZZ’ 1 6i(x25—1 — x2;). From Proposi-
tion 5.7 we have ||2/[| < 10? Let (21/94;)"_; be the conjugate sequence of

(2'/Pa;)"_, and define the functionals

d - _
fy = mQJHZ’sz 1 and fz 2%5521

We have fy —fz = m21+1 Yo il k) € Bx;, by the choice of (V)i
and (z})3™,. Hence || fy — fz| < 1. Also,

m23+1

Ify + fzl = Z% T3i_1 — T3;)
S M2t Zi:l %’(1321'4 - in) (Z?:l ai(T2i-1 — T2i))
B I35 ai(@ai1 — x2;) ||
1
> maj+1 m%j—i—l
= 10C’ - 10C .

m21+1
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By the choice of the sequence (z})3",, we get

1

maj41

1 < 1
maj41 2

Z vi dist(zs;,_1,Y) <

i=1

diSt(fy, Y) <

and also dist(fz, Z) < % Thus we may choose hy € Y and hy € Z such that

(62) Iy~ Ayl < 5 and Iz~ hall < 5.
From the previous estimates we get that
[hy — hzl| <20 ||y + hz]| . O
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