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NORMS OF SCHUR MULTIPLIERS

KENNETH R. DAVIDSON AND ALLAN P. DONSIG

Abstract. A subset P of N2 is called Schur bounded if every infi-
nite matrix with bounded scalar entries which is zero off of P yields a
bounded Schur multiplier on B(H). Such sets are characterized as being
the union of a subset with at most k entries in each row with another
that has at most k entries in each column, for some finite k. If k is
optimal, there is a Schur multiplier supported on the pattern with norm

O(
√

k), which is sharp up to a constant. The same characterization
also holds for operator-valued Schur multipliers in the cb-norm, i.e., ev-
ery infinite matrix with bounded operator entries which is zero off of P
yields a completely bounded Schur multiplier.

This result can be deduced from a theorem of Varopoulos on the
projective tensor product of two copies of l∞. Our techniques give a
new, more elementary proof of his result.

We also consider the Schur multipliers for certain matrices which
have a large symmetry group. In these examples, we are able to compute
the Schur multiplier norm exactly. This is carried out in detail for a few
examples including the Kneser graphs.

Schur multiplication is just the entrywise multiplication of matrices or oper-
ators in a fixed basis. These maps arise naturally as the (weak-∗ continuous)
bimodule maps for the algebra of diagonal matrices (operators). They are
well-behaved completely bounded maps that play a useful role in the theory
of operator algebras.

As in the case of operators themselves, the actual calculation of the norm of
any specific Schur multiplier is a delicate task; and is often impossible. This
has made it difficult to attack certain natural, even seemingly elementary,
questions.

This study arose out of an effort to understand norms of Schur multipli-
ers supported on certain patterns of matrix entries. The question of which
patterns have the property that every possible choice of bounded scalar en-
tries supported on the pattern yield bounded Schur multipliers was raised by
Nikolskaya and Farforovskaya in [15]. We solve this problem completely. The
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answer is surprisingly elegant. The pattern must decompose into two sets,
one with a bound on the number of entries in each row, and the other with
a bound on the number of entries in each column. In fact, these patterns
have the stronger property that if we allow operator entries supported pat-
tern, instead of scalar entries, then they still yield completely bounded Schur
multipliers.

In fact, our result may be deduced from results of Varopoulos [24], [23]
and Pisier [18]. We had overlooked this work and only discovered it late in
our study. Perhaps this is just as well, as we may well have stopped had
we realized how close their results were to the ones we were seeking. The
upshot is that we also obtain a much more elementary proof of Varopoulos’
theorem. Indeed our main tool in the decomposition is an elementary, albeit
powerful, combinatorial result known as the min-cut-max-flow theorem. For
the other direction, we use an elementary but very clever argument of Lust-
Piquard [12] to construct matrices with small norm and relatively large entries.
Unfortunately we were not able to completely recover the probabilistic version
of Varopoulos’ Theorem. However in the pattern case, this is easy.

In Section 3, we recover results of [15] on patterns of Hankel and Toeplitz
forms. The Toeplitz case is classical, and we compare the bounds from our
theorem with the tighter bounds available from a deeper use of function theory.

Sections 4 and 5 deal with exact computation of the Schur norm of certain
matrices that have lots of symmetry. More precisely, let G be a finite group
acting transitively on a set X. We obtain an explicit formula for the Schur
multiplier norm of matrices in the commutant of the action, i.e., matrices
constant on each orbit of G. This uses a result of Mathias [13]. We carry
this out for one nontrivial case—the adjacency matrix of the Kneser graph
K(2n+1, n), which has

(
2n+1

n

)
vertices indexed by n-element subsets of 2n+1,

with edges between disjoint sets.
We would like to thank many people with whom we had helpful conversa-

tions about aspects of this problem. We thank Bill Cunningham for showing
us how to use the min-cut-max-flow theorem. Thanks to Chris Godsil for
pointing us to the literature on the spectral analysis of Kneser and Johnson
graphs. We thank David Handelman for sharing his notes on Johnson graphs
with us. We thank Stanislaw Szarek for pointing out the very useful paper
of Françoise Lust-Piquard [12]; and Nico Spronk for pointing out the paper
by Pisier on multipliers of nonamenable groups [18]. Finally, we thank Vern
Paulsen and Vladimir Peller for some helpful comments.

1. Background

If A = [aij ]i,j∈S is a finite or infinite matrix, the Schur (a.k.a. Hadamard)
multiplier is the operator SA on B(l2(S)) that acts on an operator T = [tij ]
by pointwise multiplication: SA(T ) = [aijtij ]. To distinguish from the norm
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on bounded operators, we will write ‖A‖m for the norm of a Schur multiplier.
In general it is very difficult to compute the norm of a Schur multiplier.
Nevertheless, much is known in a theoretical sense about the norm. In this
section, we will quickly review some of the most important results.

The following classical result owes most credit to Grothendieck. For a
proof, see the books by Pisier [19, Theorem 5.1] and Paulsen [16, Theorem
8.7].

Theorem 1.1. For X an arbitrary set, let S = [sij ] be an |X|×|X| matrix
with bounded entries considered as a Schur multiplier on B(l2(X)). Then the
following are equivalent:

(1) ‖S‖m ≤ 1.
(2) ‖S‖cb ≤ 1.
(2′)There are contractions V and W from l2(X) to l2(X) ⊗ l2(Y ) such

that S(A) = W ∗(A⊗ I)V .
(3) There are unit vectors xi and yj in l2(Y ) so that sij = x∗i yj.
(4) γ2(S) ≤ 1 where γ2(S) = infS=AB ‖A‖2,∞‖B‖1,2.
(5) There are |X|×|X| matrices A = [aij ] and B = [bij ] with aii = bii = 1

so that
[

A S
S∗ B

]
is positive semidefinite.

Recall that the complete bound norm of S is the norm of the inflation of
S acting on operators with operator entries. The most elegant proof of (1)
implies (2) is due to Smith [21]. The converse is trivial. The equivalence of (2)
and (2′) is Wittstock’s Theorem for representing completely bounded maps.

The equivalence of (1), (3) and (4) is due to Grothendieck. The implication
(3) implies (1) is actually in Schur’s original paper [20]. (3) follows from (2′) by
taking yj = (E1j ⊗ I)V ej and xi = (E1i⊗ I)Wei. Conversely, (3) implies (2′)
by taking V ej = ej ⊗ yj and Wei = ei ⊗ xi. This condition was rediscovered
by Haagerup, and became well-known as his observation. So we shall refer to
these as the Grothendieck–Haagerup vectors for the Schur multiplier.

The γ2 norm is the optimal factorization through Hilbert space of S consid-
ered as a map from l1 to l∞. The norm ‖A‖2,∞ is the maximum of the 2-norm
of the rows; while ‖B‖1,2 is the maximum of the 2-norm of the columns. Thus
(3) implies (4) follows from A =

∑
i eix

∗
i and B =

∑
j yje

∗
j . And this impli-

cation is reversible.
The equivalence of (5) is due to Paulsen, Power and Smith [17]. This

follows from (3) by taking aij = x∗i xj and bij = y∗i yj . Conversely, assume
first that X is finite. Then the positive matrix P decomposes as a sum
of positive rank one matrices, and thus have the form [z̄izj ] which can be
seen to be a scalar version of (3). Indeed it is completely positive. Hence
the sum SP is also a completely positive Schur multiplier. Consequently
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‖SP ‖cb = ‖SP (I)‖ = max{aii, bii} = 1. So (2) holds. The case of general X
is a routine limit argument.

The γ2 norm is equivalent to the norm in the Haagerup tensor product
`∞(X)⊗h`∞(X), where we identify an elementary tensor a⊗b with the matrix
[aibj ]. The Haagerup norm of a tensor τ is given by taking the infimum over
all representations τ =

∑
k ak ⊗ bk of∥∥∥∑
k

aka∗k

∥∥∥1/2 ∥∥∥∑
k

b∗kbk

∥∥∥1/2

.

See [16, Chapter 17]. Of course, since `∞ is abelian, the order of the adjoints
is irrelevant. One can see the equivalence by taking a factorization S = AB
from (4). Consider A as a matrix with columns ak ∈ `∞(X) and B as a matrix
with rows bk ∈ `∞(X). Identify the product with the tensor

∑
k ak ⊗ bk. The

norm ‖
∑

k aka∗k‖1/2 can be seen to be ‖A‖2,∞ and the norm of ‖
∑

k b∗kbk‖1/2

to be ‖B‖1,2.
Generally, it is difficult to compute the norm of a Schur multiplier. The

exception occurs when the matrix S is positive definite. Then it is a classical
fact that S is a completely positive map. Consequently, ‖S‖cb = ‖S(I)‖ =
supi∈X sii.

Grothendieck proved another remarkable result about Schur multipliers.
Recall that the projective tensor product `∞(X)⊗̂`∞(X) norms a tensor τ as
the infimum over representations τ =

∑
k ak⊗bk of the quantity

∑
k ‖ak‖ ‖bk‖.

It is a surprising fact that this norm and the γ2 or Haagerup norm are equiv-
alent. We will need this connection to understand the relevance of work of
Varopoulos. For the moment, we state this result in a way that makes a
stronger connection to Schur multipliers. An elementary tensor a⊗ b yields a
rank one matrix [aibj ]. Thus Grothendieck’s result is equivalent to:

Theorem 1.2 (Grothendieck). The closure of the convex hull of the rank
one Schur multipliers of norm one in the topology of pointwise convergence
contains the ball of all Schur multipliers of norm at most K−1

G , where KG is
a universal constant.

In terms of the projective tensor product norm for a tensor τ and the
corresponding Schur multiplier Sτ , this result says that

K−1
G ‖τ‖`∞(S)⊗̂`∞(S) ≤ ‖Sτ‖m ≤ ‖τ‖`∞(S)⊗̂`∞(S).

The constant KG is not known exactly. In the complex case Haagerup [10]
showed that 1.338 < KG < 1.405; and in the real case Krivine [11] obtained
the range [1.676, 1.783] and conjectured the correct answer to be π

2 log(1+
√

2)
.

We turn to the results of Varopoulos [24], [23] and Pisier [18] which relate
to our work. The paper of Varopoulos [24] is famous for showing that three
commuting contractions need not satisfy the von Neumann inequality. Proofs
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of this, including the one in the appendix of Varopoulos’s paper, are gener-
ally constructive. But the argument in the main part of his paper instead
establishes a result about `∞(X)⊗̂`∞(X). He does not establish precise in-
formation about constants. This result was extended and sharpened by Pisier,
who casts it in the language of Schur multipliers, to deal with multipliers and
lacunary sets on nonamenable groups.

Consider {±1}X×X to be the space of functions from X × X to {1,−1}
with the product measure µ obtained from p(1) = p(−1) = .5.

Theorem 1.3 (Varopoulos [24], [23]). Let S = [sij ]. The following are
equivalent.

(1) For all ε ∈ {±1}X×X , ‖[εijsij ]‖m < ∞.
(2) There exists a measurable set Y ⊂ {±1}X×X with µ(Y ) > 0 so that

‖[εijsij ]‖m < ∞ for all ε ∈ Y .
(3) S = A + B and there is a constant M so that

sup
i

∑
j

|aij |2 ≤ M2 and sup
j

∑
i

|bij |2 ≤ M2.

(4) There is a constant M so that for every pair of finite subsets R,C ⊂
X,

∑
i∈R,j∈C |sij |2 ≤ M2 max{|R|, |C|}.

Varopoulos was not concerned with the constants. He also states the result
for the projective tensor product. This is equivalent, with some change of
constants, by Grothendieck’s Theorem 1.2. Pisier formulates this for the
Schur multiplier norm, and provides a quantitative sharpening of this result.
He shows [18, Theorem 2.2] that if the average Schur multiplier norm∫

‖[εijsij ]‖m dµ(ε) = M,

then one can take the same M in (3). Our results are not quite so sharp as
Pisier’s, as we require a constant (Lemma 2.9) of approximately 1/4.

The constants M in the two conditions (3) and (4) are not the same. The
correct relationship replaces max{|R|, |C|} by |R|+|C|, and then the constants
are equal (see Lemma 2.7). So as formulated above, they are related within
a factor of 2. If M is the bound in (3), it is not difficult to obtain a bound of
2M for (1) (see Corollary 2.6). Thus Pisier’s version yields that the average
Schur norm is within a factor of 2 of the maximum.

Our initial concern was with the case in which sij ∈ {0, 1} and we wanted
a result with integer answers. This comes down to choosing A and B to also
take their values in {0, 1}. One can deduce this from Varopoulos’ theorem
at the expense of a factor of 2 in the estimates. See [18, Remark 2.4]. Our
approach will yield integral decompositions naturally without affecting the
constants.
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The referee has kindly pointed out that the recent paper [14] by Neuwirth
contains another description of Varopoulos’s Theorem in the pattern context.
He provides a concise guide to Varopoulos’s papers that will lead the reader
to this result.

We will also consider Schur multipliers with operator entries. If X = [Xij ]
is an infinite (or finite) matrix with operator entries, define SX in the same
way: SX(T ) =

[
tijXij

]
. Unlike the scalar case, in which the multiplier norm

coincides with the cb-norm, it is possible [17] that ‖SX‖m < ‖SX‖cb. The
ampliated map S

(n)
X acts coordinatewise on n×n matrices of operators. Doing

Paulsen’s ‘canonical shuffle’, one arrives at a better formulation in which it
acts on an operator with n × n matrix entries. The action is given by the
formula

S
(n)
X

( [
Aij

] )
=

[
Aij ⊗Xij

]
.

2. Schur bounded patterns

A pattern P is a subset of N×N. An infinite matrix S = [sij ] is supported
on P if {(i, j) : sij 6= 0} is contained in P. We let S(P) denote the set of
Schur multipliers supported on P with scalar matrix entries |sij | ≤ 1. Also let
OS(P) denote the set of Schur multipliers SX where X = [Xij ] is an infinite
matrix supported on P with operator entries Xij of norm at most 1.

More generally, we will also consider Schur multipliers dominated by a
given infinite matrix A = [aij ] with nonnegative entries. Let S(A) denote the
set of Schur multipliers with scalar matrix entries |sij | ≤ aij , and let OS(A)
denote the set of Schur multipliers SX where X = [Xij ] is an infinite matrix
with operator entries satisfying ‖Xij‖ ≤ aij .

Definition 2.1. Given a set of scalar (or operator valued) matrices, C,
we say that C is Schur bounded if

s(C) := sup
A∈C

‖SA‖m < ∞,

and we call s(C) the Schur bound of C. Similarly, we say that a set of operator
valued matrices, OC, is completely Schur bounded if

cs(OS) := sup
X∈OC

‖SX‖cb < ∞,

and we call cs(OC) the complete Schur bound of OC.
We say that a pattern P is Schur bounded if S(P) is Schur bounded; and

say that P is completely Schur bounded ifOS(P) is completely Schur bounded.

It is easy to see that if ‖A‖m < ∞ for all A ∈ S(P), then S(P) is Schur
bounded. Note that if AP is the matrix with 1s on the entries of P and 0s
elsewhere, then S(AP) = S(P). We will maintain a distinction because we
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will require integral decompositions when working with a pattern P. It is also
easy to see that

s(S(A)) ≤ s(OS(A)) ≤ cs(OS(A))
and likewise for patterns.

Certain patterns P are easily seen to be Schur bounded, indeed even com-
pletely Schur bounded, and this is the key to our result. The following two
definitions of row bounded for patterns and matrices are not parallel, as the
row bound of AP is actually the square root of the row bound of P. Each
definition seems natural for its context, so we content ourselves with this
warning.

Definition 2.2. A pattern is row bounded by k if there are at most k
entries in each row; and row finite if it is row bounded by k for some k ∈ N.
Similarly we define column bounded by k and column finite.

A nonnegative matrix A = [aij ] is row bounded by L if the rows of A are
bounded by L in the l2-norm: supi≥1

∑
j≥1 |aij |2 ≤ L2 < ∞. Similarly we

define column bounded by L.

The main result of this section is:

Theorem 2.3. For a pattern P, the following are equivalent:
(1) P is Schur bounded.
(2) P is completely Schur bounded.
(3) P is the union of a row finite set and a column finite set.

(4) sup
R,C finite

|P ∩ (R× C)|
|R|+ |C|

< ∞.

Moreover, the optimal bound m on the size of the row and column finite sets
in (3) coincides with the least integer dominating the supremum in (4); and
the Schur bounds satisfy

√
m/4 ≤ s(S(P)) ≤ cs(OS(P)) ≤ 2

√
m.

This theorem has a direct parallel for nonnegative matrices.

Theorem 2.4. For a nonnegative infinite matrix A = [aij ], the following
are equivalent:

(1) S(A) is Schur bounded.
(2) OS(A) is completely Schur bounded.
(3) A = B + C where B is row bounded and C is column bounded.

(4) sup
R,C finite

∑
i∈R,j∈C a2

ij

|R|+ |C|
< ∞.

Moreover, the optimal bound M on the row and column bounds in (3) coincides
with the square root of the supremum M2 in (4); and the Schur bounds satisfy

M/4 ≤ s(S(A)) ≤ cs(OS(A)) ≤ 2M.
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Lemma 2.5. If P is row (or column) bounded by n, then P is completely
Schur bounded and cs(OS(P)) ≤

√
n.

Likewise, if A is row (or column) bounded by L, then cs(OS(A)) ≤ L.

Proof. The pattern case follows from the row bounded case for the non-
negative matrix A = AP with L =

√
n. Suppose that A is row bounded by L.

Let B =
[
Bij

]
∈ OS(A), namely Bij ∈ B(H) and ‖Bij‖ ≤ aij . We will use

the isometries {Si}i∈N from H into H(∞) that carry H onto the ith summand
of H(∞). Define Xi =

∑
j≥1 BijS

∗
j and Yi = Si for i ≥ 1. Observe that

XiYj = Bij , while ‖Yj‖ = 1 and

‖Xi‖2 = ‖XiX
∗
i ‖ =

∥∥∑
j

BijB
∗
ij

∥∥ ≤ ∑
j

a2
ij ≤ L2.

If T = [Tij ] is a bounded operator with matrix entries Tij ∈ Mn, then

S
(n)
B (T ) =

[
Tij ⊗Bij

]
= diag(I ⊗Xi)

[
Tij ⊗ I

]
diag(I ⊗ Yj).

Therefore ‖SB(T )‖ ≤ L‖T‖ and so cs(OS(A)) ≤ L. �

Corollary 2.6. If P is the union of a set row bounded by n and a set
column bounded by m, then cs(OS(P)) ≤

√
n +

√
m.

Likewise, if A = B + C such that B is row bounded by L and C is column
bounded by M , then cs(OS(A)) ≤ L + M .

We require a combinatorial characterization of sets which are the union
of an n-row bounded set and an m-column bounded set. This will be a
consequence of the min-cut-max-flow theorem (see [5], for example). This is
an elementary result in combinatorial optimization that has many surprising
consequences. For example, it has been used by Richard Haydon to give a
short proof of the reflexivity of commutative subspace lattices [8]. It should
be more widely known.

Lemma 2.7. A pattern P is the union of a set Pr row bounded by m and
a set Pc column bounded by n if and only if for every pair of finite subsets
R,C ⊂ N,

|P ∩R× C| ≤ m|R|+ n|C|.
Similarly, a matrix A = [aij ] with nonnegative entries decomposes as a sum

A = Ar + Ac where Ar is row bounded by M1/2 and Ac is column bounded by
N1/2 if and only if for every pair of finite subsets R,C ⊂ N,∑

i∈R

∑
j∈C

a2
ij ≤ M |R|+ N |C|.

Proof. The two proofs are essentially identical. However the decomposition
of P must be into two disjoint subsets. This means that the decomposition
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AP = AP1 + AP2 is a split into 0, 1 matrices. We will work with A, but will
explain the differences in the pattern version when it arises.

The condition is clearly necessary.
For the converse, we first show that it suffices to solve the finite version

of the problem. For p ∈ N, let Ap be the restriction of A to the first p rows
and columns. Suppose that we can decompose Ap = Ar,p + Ac,p where Ar,p

is row bounded by M1/2 and Ac,p column bounded by N1/2 for each p ∈ N.
Fix k so that Ak 6= 0. For each p ≥ k, the set of such decompositions for Ap

is a compact subset of Mp × Mp. In the pattern case, we consider only 0, 1
decompositions. The restriction to the k× k corner is also a compact set, say
Xk,p. Observe that this is a decreasing sequence of nonempty compact sets.
Thus

⋂
p≥k Xk,p = Xk is nonempty. Therefore there is a consistent choice of

a decomposition A = Ar + Ac so that the restriction to each k× k corner lies
in Xk for each k ≥ 1. In the pattern case, the entries are all zeros and ones.

So now we may assume that A = [aij ] is a matrix supported on R0 × C0,
where R0 and C0 are finite. We may also suppose that the l2-norm of each row
is greater than M1/2 and the l2-norm of each column is greater than N1/2.
For otherwise, we assign all of those entries in the row to Ar (or all entries in
the column to Ac) and delete the row (column). Solving the reduced problem
will suffice. If after repeated use of this procedure, the matrix is empty, we
are done. Otherwise, we reach a reduced situation in which the l2-norm of
each row is greater than M1/2 and the l2-norm of each column is greater than
N1/2.

Define a graph G with vertices α, ri for i ∈ R0, cj for j ∈ C0, and ω. Put
edges from each ri ∈ R0 to each cj ∈ C0, from α to ri, i ∈ R0, and from cj

to ω, j ∈ C0. Consider a network flow on the graph in which the edge from
ri to cj may carry a2

ij units; edges leading out of α can carry up to M units;
and the edge from cj to ω can carry vj −N units, where vj =

∑
i∈R0

a2
ij . In

the pattern case, these constraints are integers.
The min-cut-max-flow theorem states that the maximal possible flow from

α to ω across this network equals the minimum flow across any cut that
separates α from ω. Moreover, when the data is integral, the maximal flow
comes from an integral solution. A cut X is just a partition of the vertices
into two disjoint sets {α} ∪ R1 ∪ C1 and {ω} ∪ R2 ∪ C2. The flow across the
cut is the total of allowable flows on each edge between the two sets.

The flow across the cut X is

f(X ) =
∑
i∈R1

∑
j∈C2

a2
ij + M |R2|+

∑
j∈C1

(vj −N)

=
∑
i∈R1

∑
j∈C2

a2
ij + M |R2| −N |C1|+

∑
i∈R0

∑
j∈C1

a2
ij

=
∑
i∈R0

∑
j∈C0

a2
ij −

∑
i∈R2

∑
j∈C2

a2
ij + M |R2|+ N |C2| −N |C0|
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≥
∑
i∈R0

∑
j∈C0

a2
ij −N |C0|.

The last inequality uses the hypothesis on A with R = R2 and C = C2. On
the other hand, the cut separating ω from the rest has flow exactly∑

j∈C0

(vj −N) =
∑
i∈R0

∑
j∈C0

a2
ij −N |C0|.

Therefore there is a network flow that achieves this maximum. In the
pattern case, the solution is integral. Necessarily this will involve a flow of
exactly vj −N from each j ∈ C0 to ω. Let bij be the optimal flow from ri to
cj . So 0 ≤ bij ≤ a2

ij . The flow out of each ri equals the flow into ri from α,
whence

∑
j∈C0

bij ≤ M . Since the flow into and out of each cj are the same,
we have

∑
i∈R0

bij = vj −N .

Define the matrix Ar =
[√

bij

]
and Ac =

[√
a2

ij − bij

]
. In the pattern

case, these entries are 0 or 1. Then the rows of Ar are bounded by M1/2. The
jth column of Ac has norm squared equal to∑

i∈R0

a2
ij − bij = vj − (vj −N) = N.

This is the desired decomposition and it is integral for patterns. �

To construct large norm Schur multipliers on certain patterns, we will make
use of the following remarkable result by Françoise Lust-Piquard [12, Theo-
rem 2]. While the method of proof is unexpected, it is both short and ele-
mentary.

Theorem 2.8 (Lust-Piquard). Given any (finite or infinite) nonnegative
matrix X = [xij ] satisfying

max
i

∑
j

x2
ij ≤ 1 and max

j

∑
i

x2
ij ≤ 1 for all i, j,

there is an operator Y = [yij ] so that

‖Y ‖ ≤
√

6 and |yij | ≥ xij for all i, j.

The constant of
√

6 is not known to be the best possible; however it is
optimal for a related extremal problem, as shown in an addendum to [12].

Lemma 2.9. Let A = [aij ] be a nonnegative m×m matrix with
∑m

i,j=1 a2
ij =

mα. Then there is a Schur multiplier S ∈ S(A) such that ‖S‖m ≥ 1
2

√
α
3 .

Proof. We may assume that there are no nonzero rows or columns. Let

ri =
m∑

j=1

a2
ij and cj =

m∑
i=1

a2
ij .
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Define
xij =

aij√
ri + cj

.

Let X = [xij ]. The row norms of X satisfy
m∑

j=1

x2
ij ≤

m∑
j=1

a2
ij

ri
= 1;

and similarly the column norms are bounded by 1.
By Theorem 2.8, there is a matrix Y such that

‖Y ‖ ≤
√

6 and |yij | ≥ xij for all i, j.

Define sij = aijxij/yij (where 0/0 := 0). Then S = [sij ] belongs to S(A).
Observe that

S(Y ) = Z := [aijxij ] =
[

a2
ij√

ri + cj

]
.

Hence ‖S‖m ≥ ‖Z‖/
√

6.
Define vectors u = (ui) and v = (vj) by

ui =
( ri

mα

)1/2

and vj =
( cj

mα

)1/2

.

Then

‖u‖2
2 =

1
mα

m∑
i=1

ri = 1

and similarly ‖v‖2 = 1. Compute

‖Z‖ ≥ u∗Zv =
1

mα

m∑
i=1

m∑
j=1

a2
ij

√
ricj

ri + cj
.

Observe that √
ricj

ri + cj
=

( 1
ri

+
1
cj

)−1/2

.

Also
m∑

i=1

m∑
j=1

a2
ij

( 1
ri

+
1
cj

)
=

m∑
i=1

m∑
j=1

a2
ij

ri
+

m∑
j=1

m∑
i=1

a2
ij

cj

=
m∑

i=1

1 +
m∑

j=1

1 = 2m.

A routine Lagrange multiplier argument shows that if αk ≥ 0 are constants,
tk > 0 are variables, and

∑m2

k=1 αktk = 2m, then
∑m2

k=1 αkt
−1/2
k is minimized
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when all tk are equal. Hence if
∑m2

k=1 αk = mα,

m2∑
k=1

αkt
−1/2
k ≥ mα

( 2m

mα

)−1/2

= mα

√
α

2
.

Applying this to the numbers 1
ri

+ 1
cj

yields

‖Z‖ ≥ 1
mα

m∑
i=1

m∑
j=1

a2
ij

( 1
ri

+
1
cj

)−1/2

≥
√

α

2
.

Thus ‖S‖m ≥
√

α√
6
√

2
= 1

2

√
α
3 . �

Proof of Theorem 2.3 and Theorem 2.4. Statements (3) and (4) are equiv-
alent by Lemma 2.7, taking m = n and M = N . Assuming (3), Corollary 2.6
shows that OS(P) or OS(A) is completely Schur bounded and gives the upper
bound on the complete Schur bound (2). That (2) implies (1) is trivial.

Assuming (4) in the pattern case, the supremum exceeds m−1; so Lemma 2.9
shows that

s(S(P)) ≥
√

m− 1
2
√

3
≥
√

m

4
for m ≥ 4. For m ≤ 16,

√
m/4 ≤ 1; and 1 is also a lower bound for any

pattern. For the matrix case, we use the exact supremum in Lemma 2.9, so
we obtain a lower bound of M/4.

Conversely, if the supremum in (4) is infinite, the same argument shows
that the Schur bounds of S(P) or S(A) are infinite. In fact, it is easy to see
that this implies that S(P) or S(A) contains unbounded Schur multipliers. It
is not difficult to produce disjoint finite rectangles Rn×Cn on which the ratio
in (4) exceeds n2. So by Lemma 2.9, we construct a Schur multiplier Sn in
S(P) or S(A) supported on Rn×Cn with Schur norm at least n/4. Taking S
to be defined on each rectangle as Sn and zero elsewhere, S is an unbounded
Schur multiplier in this class. Thus, (1) implies (4). �

Remark 2.10 (Probabilistic considerations). Recall that µ is the proba-
bility measure on {1,−1}N2

that is the product of the measure p(1) = p(−1) =
1/2 on each coordinate. Let A =

[
aij

]
be an N×N matrix with non-negative

entries. Suppose that there is a measurable subset Y ⊂ {±1}N2
with µ(Y ) > 0

and a constant C so that ‖[εijaij ]‖m < C for all ε ∈ Y . It is a routine fact from
measure theory that there is a finite subset F of N2 and a point η ∈ {1,−1}F

so that the cylinder set CF = {ε : ε(i, j) = η(i, j), (i, j) ∈ F} satisfies

µ(Y ∩ CF ) > µ(CF )/2.

Let D = C + 2
∑

(i,j)∈F aij and let

Z = {ε ∈ {±1}N2
: ‖[εijaij ]‖m < D}.
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Since for any y ∈ Y , the corresponding Schur multiplier is bounded by C,
a rather crude estimate shows that for any z ∈ {±1}N2

which agrees with y
off of the set F the Schur norm of [zijaij ] is bounded by D. It follows that
µ(Z) > 1/2.

There is nothing special about 1/2, and indeed it follows immediately that
‖[εijaij ]‖m < ∞ µ–almost everywhere.

Now specialize to the case of a pattern P, i.e., aij ∈ {0, 1}. Since {±1}N2

is a group, it is easy to see that Z2, the set of all products of two elements
of Z, will equal all of {±1}N2

. Indeed, one only need observe that for any
w = (εij), the two sets Z and wZ intersect, say containing z1 = wz2. Then
w = z1z2. Therefore

‖[εijaij ]‖m ≤ D2

for all choices of sign. As the points {±1}N2
are the extreme points of the ball

of l∞(N2), it now follows that s(S(P)) < ∞.
This argument does not yield Varopoulos’ Theorem for arbitrary A. We

were not able to find an improvement on the duality argument in [24] which
is used to deduce (4) of Theorem 2.4. Nor do we obtain Pisier’s quantitative
refinement about the average Schur norm being comparable (within a factor
of 2) to the maximum value s(S(A)).

Remark 2.11. One might suspect, from the
√

n arising in Lemma 2.5,
that if two matrices are supported on pairwise disjoint patterns, there might
be an L2 estimate on the Schur norm of the sum. This is not the case, as the
following example shows.

Let 1 = (1, 1, 1, 1)t ∈ C4 and A = 11∗ − I. If U = diag(1, i,−1,−i), then
the diagonal expectation is

∆(X) = SI(X) =
1
4

3∑
k=0

UkXU∗k.

We use a device due to Bhatia–Choi–Davis [3]. Observe that

SA+tI(X) = X + (t− 1)∆(X)

=
(
1 +

t− 1
4

)
X +

t− 1
4

3∑
k=1

UkXU∗k.

Therefore

‖SA+tI‖m ≤
∣∣∣1 +

t− 1
4

∣∣∣ +
3|t− 1|

4

=

{
|t| if t ≥ 1 or t ≤ −3
1
2 |3− t| if −3 ≤ t ≤ 1

.
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On the other hand, SA+tI(I) = tI; so ‖SA+tI‖m ≥ |t|. Observe that 1
411∗ is

a projection. Hence A + tI = 11∗ + (t− 1)I has spectrum {t− 1, t + 3}; and
thus

‖A + tI‖ = max{|t− 1|, |t + 3|}.
So ‖A− I‖ = 2. If −3 ≤ t ≤ 1, then SA+tI(A− I) = A− tI has norm |3− t|
and so ‖SA+tI‖m ≥ |3− t|/2.

In particular, ‖SA‖m = 3
2 and ‖SI‖m = 1, but

‖SA−I‖m = 2 >
(
‖SA‖2

m + ‖SI‖2
m

)1/2
.

3. Hankel and Toeplitz patterns

A Hankel pattern is a set of the form

H(S) = {(i, j) : i, j ∈ N, i + j ∈ S} for S ⊂ N.

A Toeplitz pattern is a set of the form

T (S) = {(i, j) : i, j ∈ N0, i− j ∈ S} for S ⊂ Z.

Recall that a set S = {s1 < s2 < . . . } is lacunary if there is a constant q > 1
so that si+1/si > q for all i ≥ 1.

Nikolskaya and Farforovskaya [15, Theorem 3.8] show that a Hankel pattern
is Schur bounded if and only if it is a finite union of lacunary sets. Such sets
are called Paley sets. They accomplish this by considering Fejér kernels and
Toeplitz extensions. We give an elementary proof based on Theorem 2.3 that
also yields the complete version.

Proposition 3.1 (Nikolskaya–Farforovskaya). Consider a Hankel pattern
H(S) of a set S ⊂ N. Then the following are equivalent:

(1) H(S) is Schur bounded.
(2) H(S) is completely Schur bounded.
(3) H(S) is the union of a row finite and a column finite set.
(4) supk≥0 |S ∩ (2k−1, 2k]| < ∞.
(5) S is the union of finitely many lacunary sets.

Proof. By Theorem 2.3, (1) and (2) are equivalent.
Let ak = |S ∩ (2k−1, 2k]| for k ≥ 0. If (3) holds, maxk≥0 ak = L < ∞.

So S splits into 2L subsets with at most one element in every second interval
(2k−1, 2k]; which are therefore lacunary with ratio at least 2. Conversely,
suppose that S is the union of finitely many lacunary sets. A lacunary set
with ratio q may be split into d lacunary sets of ratio 2 provided that qd ≥ 2.
So suppose that there are L lacunary sets of ratio 2. Then each of these sets
intersects (2k−1, 2k] in at most one element. Hence maxk≥0 ak ≤ L < ∞.
Thus (3) and (4) are equivalent.

Suppose that S is the union of L sets Si which are each lacunary with
constant 2. Split each H(Si) into the subsets Ri on or below the diagonal
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and Ci above the diagonal. Observe that Ri is row bounded by 1, and Ci is
column bounded by 1. Hence (4) implies (2).

Consider the subset of H(S) in the first 2k rows and columns Rk × Ck.
This square will contain at least 2k−1ak entries corresponding to the backward
diagonals for S ∩ (2k−1, 2k], which all have more than 2k−1 entries. Thus

sup
k≥0

|H(S) ∩ (Rk × Ck)|
|Rk|+ |Ck|

≥ sup
k≥0

2k−1ak

2k + 2k
= sup

k≥0

ak

4
.

Hence if (3) fails, this supremum if infinite. Thus H(S) is not the union of a
row finite and a column finite set. So (2) fails. �

The situation for Toeplitz patterns is quite different. It follows from clas-
sical results, as we explain below, and Nikolskaya and Farforovskaya outline
a related proof [15, Remark 3.9]. But first we show how it follows from our
theorem.

Proposition 3.2. The Toeplitz pattern T (S) of any infinite set S is not
Schur bounded. Further,

1
4
|S|1/2 ≤ s(T (S)) ≤ cs(OS(T (S)) ≤ |S|1/2.

Proof. Since T (S) is clearly row bounded by |S|, the upper bound follows
from Lemma 2.5.

Suppose that S = {s1 < s2 < · · · < sn}. Consider the m×m square matrix
with upper left hand corner equal to (s1, 0) if s1 ≥ 0 or (0,−s1) if s1 < 0.
Then beginning with row m − (sn − s1), there will be n entries of T (S) in
each row. Thus the total number of entries is at least n(m− (sn − s1)). For
m sufficiently large, this exceeds (n− 1)m. Hence by Lemma 2.9,

s(T (S)) ≥
√

n− 1
2
√

3
≥
√

n

4

provided n ≥ 4. The trivial lower bound of 1 yields the lower bound for
n < 4. �

To see how this is done classically, we recall the following [2, Theorem 8.1].
Here, T denotes the space of Toeplitz operators.

Theorem 3.3 (Bennett). A Toeplitz matrix A = [ai−j ] determines a
bounded Schur multiplier if and only if there is a finite complex Borel measure
µ on the unit circle T so that µ̂(n) = an, n ∈ Z. Moreover

‖A‖m = ‖SA|T ‖ = ‖µ‖.

We combine this with estimates obtained from the Khintchine inequalities.
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Theorem 3.4. Let (ak)k∈Z be an l2 sequence and let A = [ai−j ]. Then
1√
2
‖(ak)‖2 ≤ s(S(A)) ≤ ‖(ak)‖2.

Proof. Suppose S ∈ S(A), that is, S = [sij ] with |sij | ≤ ai−j . Then each
row of S is norm bounded by ‖(ak)‖2. Hence by Lemma 2.5, ‖S‖m ≤ ‖(ak)‖2.
So s(S(A)) ≤ ‖(ak)‖2.

Conversely, let X := {1,−1}Z. Put the measure µ on X which is the
product of measures on {−1, 1} assigning measure 1/2 to both ±1. For ε =
(εk)k∈Z in X, define fε(θ) =

∑
k∈Z εkakeikθ. Then fε ∈ L2(T) ⊂ L1(T).

Hence Sε := STfε
defines a bounded Schur multiplier with

‖Sε‖m = ‖fε‖1 ≤ ‖fε‖2 = ‖(ak)‖2.

Then we make use of the Khintchine inequality [22], [9]:
1√
2
‖(ak)‖2 ≤

∫
X

‖fε‖1 dµ(ε) ≤ ‖(ak)‖2.

It follows that on average, most fε have L1-norm comparable to the L2-
norm. In particular, there is some choice of ε with ‖fε‖1 ≥ 1√

2
‖(ak)‖2. Thus

s(S(A)) ≥ ‖Sε‖m ≥ 1√
2
‖(ak)‖2. �

Remark 3.5. In the case of a finite Toeplitz pattern T (S), say S = {s1 <
s2 < · · · < sn}, fε =

∑n
k=1 εkeiskθ. We can use the Khintchine inequality for

L∞:
‖(ak)‖2 ≤

∫
X

‖fε‖∞ dµ(ε) ≤
√

2‖(ak)‖2.

Thus there will be choices of ε so that ‖fε‖∞ ≤
√

2n. Then note that
STfε

(Tfε) = Tf1 , where f1 =
∑n

k=1 eiskθ. Clearly ‖f1‖∞ = f1(0) = n. Thus
‖STfε

|T (S)‖ ≥
√

n/2.

4. Patterns with a symmetry group

Consider a finite group G acting transitively on a finite set X. Think of
this as a matrix representation on the Hilbert space HX with orthonormal
basis {ex : x ∈ X}. Let π denote the representation of G on HX and T the
commutant of π(G). The purpose of this section is to compute the norm of
ST for T ∈ T .

Decompose X2 into G-orbits Xi for 0 ≤ i ≤ n, beginning with the diagonal
X0 = {(x, x) : x ∈ X}. Let Ti ∈ B(HX) denote the matrix with 1s on the
entries of Xi and 0 elsewhere. Then it is easy and well-known that T is
span{Ti : 0 ≤ i ≤ n}. In particular, T is a C*-algebra. Also observe that
every element of T is constant on the main diagonal.

Since G acts transitively on X, ri := |{y ∈ X : (x, y) ∈ Xi}| is indepen-
dent of the choice of x ∈ X. Thus the vector 1 of all ones is a common
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eigenvector for each Ti, and hence for all elements of T , corresponding to a
one-dimensional reducing subspace on which G acts via the trivial represen-
tation.

The following is an easy, general upper bound for ‖T‖m for any matrix
T which has been proven many times in the literature. As far as we know,
the first instance is Davis [6] for the Hermitian case and Walters [25] in the
general case. The latter proof is rather involved and a simplification in [4]
still seems unnecessarily complicated. So we include a short easy proof here.

As usual, ∆ is the expectation onto the diagonal.

Proposition 4.1. For a matrix T ,

‖T‖m ≤ ‖∆(|T ∗|)‖1/2 ‖∆(|T |)‖1/2 =
∥∥ |T ∗|∥∥1/2

m

∥∥ |T |∥∥1/2

m
.

Proof. Use polar decomposition to factor T = U |T |. Define vectors xi =
|T |1/2ei and yj = |T |1/2U∗ej . Then

〈xi, yj〉 = 〈|T |1/2ei, |T |1/2U∗ej〉 = 〈Tei, ej〉.
This yields a Grothendieck–Haagerup form for ST . Now

‖xi‖2 = 〈|T |1/2ei, |T |1/2ei〉 = 〈|T |ei, ei〉.

Hence maxi ‖xi‖ = ‖∆(|T |)‖1/2. Similarly, since |T |1/2U∗ = U∗|T ∗|1/2,

‖yj‖2 = 〈U∗|T ∗|1/2ej , U
∗|T ∗|1/2ej〉 = 〈|T ∗|ej , ej〉.

So maxj ‖yj‖ = ‖∆(|T ∗|)‖1/2. Therefore

‖T‖m ≤ max
i,j

‖xi‖ ‖yj‖ = ‖∆(|T ∗|)‖1/2 ‖∆(|T |)‖1/2.

Since |T | and |T ∗| are positive, the Schur norm is just the sup of their diagonal
entries. �

Corollary 4.2. If T = T ∗, then ‖T‖m ≤ ‖∆(|T |)‖.

Remark 4.3. In general this is a strict inequality. If T =
[
4 3
3 1

]
, then

|T | =
[
2
√

5
√

5√
5

√
5

]
. But ‖ST ‖m = 4 < 2

√
5. Indeed, take x1 = y1 = 2e1 and

x2 = 3
2e1 +

√
5

2 e2 and y2 = 3
2e1 −

√
5

2 e2.

The main result of this section is:

Theorem 4.4. Let X be a finite set with a transitive action by a finite
group G. If T belongs to T , the commutant of the action of G, then for any
x0 ∈ X,

‖T‖m = ‖ST |T ‖ = |X|−1 Tr(|T |) = 〈|T |ex0 , ex0〉.
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This result is a special case of a nice result of Mathias [13]. As far as
we know, the application of Mathias’ result to the case of matrices invariant
under group actions has not been exploited. As Mathias’s argument is short
and elegant, we include it.

Theorem 4.5 (Mathias). If T is an n×n matrix with ∆(|T ∗|) and ∆(|T |)
scalar, then

‖T‖m =
1
n

Tr(|T |).

Proof. For an upper bound, Proposition 4.1 shows that

‖T‖m ≤ ‖∆(|T ∗|)‖1/2 ‖∆(|T |)‖1/2

=
(

1
n

Tr(|T ∗|)
)1/2 (

1
n

Tr(|T |)
)1/2

=
1
n

Tr(|T |),

because |T | and |T ∗| are constant on the main diagonal, and |T ∗| is unitarily
equivalent to |T |, and so has the same trace.

For the lower bound, use the polar decomposition T = W |T |. Let W have
matrix entries which are the complex conjugates of the matrix entries of W .
Write T = [tij ] and W = [wij ] as n× n matrices in the given basis. Set 1 to
be the vector with n 1’s. Then

‖T‖m ≥ ‖ST (W )‖ ≥ 1
n
〈ST (W )1,1〉

=
1
n

n∑
i=1

n∑
j=1

wijtij =
1
n

n∑
j=1

〈W ∗Tej , ej〉 =
1
n

Tr(|T |).

Thus ‖T‖m = 1
n Tr(|T |). �

Proof of Theorem 4.4. We have already observed that elements of T are
constant on the diagonal. Thus ‖T‖m = 1

n Tr(|T |) = 〈|T |ex0 , ex0〉. For the
rest, observe that W belongs to C∗(T ). Hence so does W because the basis
Ti of T has real entries. �

We will provide an interesting example in the next section. For now we
provide a couple of more accessible ones.

Example 4.6. Consider the action of the symmetric group Sn acting on
a set X with n elements in the canonical way. Then the orbits in X2 are just
the diagonal X0 and its complement X1. So SX1 is the projection onto the
off-diagonal part of the matrix.

Observe that X1 = 11∗−I, where 1 is the vector of n ones. Since 11∗ = nP ,
where P is the projection onto C1, X1 = (n−1)P −P⊥. Therefore we obtain
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a formula due to Bhatia, Choi and Davis [3]:

‖X1‖m =
1
n

Tr(|X1|) =
1
n

Tr
(
(n− 1)P + P⊥)

=
1
n

(n− 1 + n− 1) = 2− 2
n

.

Example 4.7. Consider the cyclic group Cn acting on an n-element set,
n ≥ 3. Let U be the unitary operator given by Uek = ek+1 for 1 ≤ k ≤ n,
working modulo n. The powers of U yields a basis for the commutant of the
group action.

Consider T = U + I. The spectrum of U is just {ωk : 0 ≤ k ≤ n−1} where
ω = e2πi/n. Thus the spectrum of |T | consists of the points

|1 + ωk| = 2
∣∣∣∣cos

(
kπ

n

)∣∣∣∣ for 0 ≤ k ≤ n− 1.

Hence

‖T‖m =
1
n

Tr(|T |) =
2
n

n−1∑
k=0

∣∣∣∣cos
(

kπ

n

)∣∣∣∣ =


2 cos( π

2n )
n sin( π

2n )
n even,

2
n sin( π

2n )
n odd.

Thus the limit as n tends to infinity is 4
π . The multiplier norms for the odd

cycles decrease to 4
π , while the even cycles increase to the same limit.

Example 4.8. Mathias [13] considers polynomials in the circulant ma-
trices Cz given by Czek = ek+1 for 1 ≤ k < n and Czen = ze1, where
|z| = 1. This falls into our rubric because there is a diagonal unitary D so
that DCzD

∗ = wU where U is the cycle in the previous example and w is any
nth root of z. It is easy to see that conjugation by a diagonal unitary has no
effect on the Schur norm. Thus any polynomial in Cz is unitarily equivalent
to an element of C∗(U) via the diagonal D. Hence the Schur norm equals the
normalized trace of the absolute value.

The most interesting example of this was obtained with z = −1 and Sn =∑n−1
k=0 Ck

−1, which is the matrix with entries sgn(i−j). So the Schur multiplier
defined by Sn is a finite Hilbert transform. Mathias shows that

‖Sn‖m =
2
n

bn/2c∑
j=1

cot
(2j − 1)π

2n
.

From this, he obtains sharper estimates on the norm of triangular truncation
than are obtained in [1].
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5. Kneser and Johnson graph patterns

In this section, we consider an interesting family of symmetric patterns
which arise commonly in graph theory and combinatorial codes. The Johnson
graphs J(v, n, i) have

(
v
n

)
vertices indexed by n element subsets of a v element

set, and edges between A and B if |A ∩B| = i. Thus 0 ≤ i ≤ n. We consider
only 1 ≤ n ≤ v/2 since, if n > v/2, one obtains the same graphs by considering
the complementary sets of cardinality v − n. We will explicitly carry out the
calculation for the Kneser graphs K(v, n) = J(v, n, 0), and in particular, for
K(2n + 1, n). For more on Johnson and Kneser graphs see [7].

We obtained certain Kneser graphs from Toeplitz patterns. Take a finite
subset S = {s1 < s2 < · · · < s2n+1} and consider the Toeplitz pattern P with
diagonals in S, namely P = {(i, j) : j− i ∈ S}. Consider R to be the set of all
sums of n elements from S and C to be the set of all sums of n+1 elements from
S. Index R by the corresponding subset A of {1, 2, . . . , 2n+1} of cardinality n;
and likewise index each element of C by a subset B of cardinality n+1. Then
for each entry A in R, there are exactly n + 1 elements of C which contain it.
The difference of the sums is an element of S. It is convenient to re-index C
by sets of cardinality n, replacing B by its complement {1, 2, . . . , 2n + 1} \B.
Then the pattern can be seen to be the Kneser graph K(2n+1, n) with

(
2n+1

n

)
vertices indexed by n element subsets of a 2n + 1 element set, with an edge
between vertices A and B if A∩B = ∅. In general, unfortunately, P∩ (R×C)
will contain more than just these entries, because two subsets of S of size n+1
can have the same sum.

The adjacency matrix of a graph G is a v× v matrix with a 1 in each entry
(i, j) corresponding to an edge from vertex i to vertex j, and 0’s elsewhere.
This is a symmetric matrix and its spectral theory is available in the graph
theory literature; see, for example, [7]. We prove the simple facts we need.

Fix (v, n) with n ≤ v and let X denote the set of n element subsets of
{1, . . . , v}. Define a Hilbert space H = HX as in the previous section but
write the basis as {eA : A ∈ X}. Observe that there is a natural action π of
the symmetric group Sv on X. The orbits in X2 are

Xi = {(A,B) : A,B ∈ X, |A ∩B| = i} for 0 ≤ i ≤ n.

The matrix Ti is just the adjacency matrix of the Johnson graph J(v, n, i)
and, in particular, Tn = I.

This action has additional structure that does not hold for arbitrary tran-
sitive actions.

Lemma 5.1. The commutant T = span{Ti : 0 ≤ i ≤ n} of π(Sv) is
abelian. Thus π decomposes into a direct sum of n + 1 distinct irreducible
representations.
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Proof. Equality with the span was observed in the last section. To see that
the algebra T is abelian, observe that TiTj =

∑n
k=0 aijkTk where we can find

the coefficients aijk by fixing any two sets A,B ⊂ V of size n with |A∩B| = k
and computing

aijk = |{C ⊂ V : |C| = n, |A ∩ C| = i, |C ∩B| = j}.

This is clearly independent of the order of i and j. As T is abelian and
n+1 dimensional, the representation π decomposes into a direct sum of n+1
distinct irreducible representations. �

Corollary 5.2. ‖Ti‖ =
(
n
i

)(
v−n
n−i

)
and this is an eigenvalue of multiplicity

one. The spectrum of Ti contains at most n + 1 points.

Proof. Observe that if |A| = n, then the number of subsets B ∈ X with
|A ∩B| = i is

(
n
i

)(
v−n
n−i

)
. Thus Ti has this many 1’s in each row. Hence

Ti1 =
(

n

i

)(
v − n

n− i

)
1.

Clearly Ti has nonnegative entries and is indecomposable (except for i =
n, the identity matrix). So by the Perron–Frobenius Theorem,

(
n
i

)(
v−n
n−i

)
is

the spectral radius and 1 is the unique eigenvector; and there are no other
eigenvalues on the circle of this radius. Since T = T ∗, the norm equals
spectral radius. As T is n + 1 dimensional, the spectrum can have at most
n + 1 points. �

We need to identify the invariant subspaces of Sv as they are the eigenspaces
of Ti. The space V0 = C1 yields the trivial representation. Define vectors as-
sociated to sets C ⊆ {1, . . . , v} of cardinality at most n, including the empty
set, by

vC :=
∑

|A|=n, A∩C=∅

eA.

Then define subspaces Vi = span{vC : |C| = i} for 0 ≤ i ≤ n. It is obvious
that each Vi is invariant for Sv. Given C with |C| = i, we have∑

C⊂D,|D|=i+1

vD = (v − n− i)vC ,

as the coefficient of eA counts the number of choices for the (i + 1)st element
of D disjoint from an A already disjoint from C. Therefore

C1 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn.

So the n + 1 subspaces Wi = Vi 	 Vi−1 are invariant for Sv.
Let Ei denote the idempotent in T projecting onto Wi. Observe that

T = span{Ei : 0 ≤ i ≤ n}. We need to know the dimension of these subspaces.
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Lemma 5.3. The vectors {vC : |C| = i} are linearly independent. Hence
dim Wi =

(
v
i

)
−

(
v

i−1

)
.

Proof. Suppose that vC0 +
∑

|C|=i, C 6=C0
γCvC = 0. By averaging over the

subgroup of Sv which fixes C0, namely Si ×Sv−i, we may assume that the
coefficients are invariant under this action. Hence γC = αj where j = |C∩C0|.
So with wj :=

∑
|C|=i, |C∩C0|=j vC , we have

∑i
j=0 αjwj = 0 where αi = 1. We

also define vectors xk =
∑

|A∩C0|=k eA, which are clearly linearly independent
for 0 ≤ k ≤ i. Compute for 0 ≤ j ≤ i (here A implicitly has |A| = n)

wj =
∑
|C|=i

|C∩C0|=j

∑
A∩C=∅

eA =
i−j∑
k=0

bjkxk

where the coefficients are obtained by counting, for a fixed set A with |C0 ∩
A| = k and k ≤ i− j:

bjk = |{C : |C|= i, |C ∩ C0|=j, A ∩ C =∅}| =
(

i−k

j

)(
v+k−n−i

i−j

)
.

It is evident by induction that

span{wj : i− k ≤ j ≤ i} = span{xj : 0 ≤ j ≤ k}.
So {vC : |C| = i} are linearly independent. �

We let Ti =
∑n

j=0 λijEj be the spectral decomposition of each Ti. The
discussion above shows that if |C| = j, then vC is contained in Vj but not
Vj−1. Thus λij is the unique scalar so that (Ti − λijI)vC ∈ Vj−1. This idea
can be used to compute the eigenvalues, but the computations are nontrivial.
We refer to [7, Theorem 9.4.3] for the Kneser graph K(2n+1, n) which is the
only one we work out in detail.

Lemma 5.4. The adjacency matrix for the Kneser graph K(2n+1, n) has
eigenvalues (−1)i(n + 1− i) with eigenspaces Wi for 0 ≤ i ≤ n.

Theorem 5.5. If T is the adjacency matrix of K(2n + 1, n), then

‖T‖m = ‖ST |T ‖ =
22n(
2n+1

n

) =
(4)(6) . . . (2n + 2)
(3)(5) . . . (2n + 1)

>
1
2

log(2n + 3).

Proof. By Theorem 4.4 and Lemma 5.4,

‖T‖m = ‖∆(|T |)‖ =
(

2n + 1
n

)−1 n∑
i=0

(n + 1− i) Tr(Ei)

=
(

2n + 1
n

)−1 n∑
i=0

(n + 1− i)
((

2n + 1
i

)
−

(
2n + 1
i− 1

))
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=
(

2n + 1
n

)−1 n∑
i=0

(
2n + 1

i

)

=
(

2n + 1
n

)−1 1
2

2n+1∑
i=0

(
2n + 1

i

)

=
(

2n + 1
n

)−1

22n =
22nn!(n + 1)!

(2n + 1)!

=
2 · 4 · · · (2n) 2 · 4 · · · (2n) · (2n + 2)
2 · 4 · · · (2n) 1 · 3 · · · (2n−1)(2n+1)

=
2 · 4 · · · (2n) · (2n + 2)
1 · 3 · · · (2n−1)(2n+1)

=
n∏

i=0

(
1 +

1
2i + 1

)
>

1
2

log(2n + 3). �
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