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LENGTH MINIMIZING PATHS IN THE HYPERBOLIC
PLANE: PROOF VIA PAIRED SUBCALIBRATIONS

HEATHER HELMANDOLLAR AND KEITH PENROD

Abstract. Minimization proofs using paired calibrations have in the
past been done with vector fields of divergence zero. We generalize
this method to find the shortest network connecting four points in the
hyperbolic plane.

1. Paired subcalibrations

Jacob Steiner posed the problem of finding the shortest path connecting
several points in the plane. Ronald Graham considered the case where the
points all lie on the same circle (see [2], [3]). We begin by considering three
points p1, p2, and p3 spaced evenly around a circle which form a triangle S in
the Poincaré Disk D. Let s1, s2, and s3 be the sides of that triangle and let
Y = {yi} be the network connecting {pi} to the origin and separating S into
regions C1, C2, and C3 so that yi originates from pi and has unit normal ~ni

pointing toward Ci. Then we construct vector fields ~V1, ~V2, and ~V3, where ~Vi

enters through si (see Figure 1(a)).
In previous paired calibration proofs, these vector fields were required to

have divergence zero; however, we require the following less-restrictive crite-
rion for each i:

(1) for all p ∈ Ci div ~Vi(p) ≤ div ~Vj(p), j 6= i.

Whenever {(~Vi, Ci)} is a system that satisfies (1) it is called a paired subcal-
ibration.

Theorem 1. Suppose S = {si} is an n-gon and Y = {yi} is a network
separating S into regions {Ci} and {(~Vi, Ci)} is a paired subcalibration that
satisfy the following:
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Figure 1. Three points

(1) Whenever Ci and Cj (i 6= j) share a common line yk ∈ Y , ~Vi − ~Vj is
a unit normal to yk.

(2) Whenever W = {wi} is a network of the same combinatorial structure
as Y , Φout(W ) ≤ Len(W ) with equality when W = Y .

Then Y is the unique minimizer for its combinatorial structure.

Proof. We define the following notation for flux: Φ(~V , y) is the flux of the
vector field ~V through the oriented curve y (i.e., y has a given unit normal).
It is also natural to define Φin and Φout as1

Φin(S) =
n∑

i=1

Φ(~Vi, si).

and

Φout(Y ) =
n∑

i=1

Φout(Ci)

where Φout(Ci) =
∑

Φ(Vi, y), summing over all y ∈ Y that separate Ci from
Cj (j 6= i).

Then we have

Φout(Y )− Φin(S) =
n∑

i=1

∫∫
Ci

div ~VidA

1We will also use Φin when S is understood by context.
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and for any competitor W that divides S into regions K1, . . . ,Kn

Φout(W )− Φin(S) =
n∑

i=1

∫∫
Ki

div ~VidA ≥
n∑

i=1

∫∫
Ci

div ~VidA,

which gives
Φout(W )− Φin(S) ≥ Φout(Y )− Φin(S).

Since {~Vi} are such that Φout(W ) ≤ Len(W ) with equality when W = Y , we
obtain

Len(Y ) = Φout(Y ) ≤ Φout(W ) ≤ Len(W ). �

Continuing the proof for three points in D, we now define the three vector
fields ~V1, ~V2, and ~V3 to be orthogonal to {si}, respectively, with constant
hyperbolic length 1/

√
3. So ~V2 and ~V3 are rotations of

(2) ~V1(x, y) =
1− (x2 + y2)√

3
〈0,−1〉 , (x, y) ∈ D.

The general equation for divergence on a space with a metric tensor is given
in Eisenhart [4, page 113]. With the metric

ds2 =
1

(1− r2)2
(
dx2 + dy2

)
on D, we have the following formula for divergence of a vector field ~V =
〈f(x, y), g(x, y)〉:

div ~V = fx(x, y) + gy(x, y) +
4

1− (x2 + y2)
(x · f(x, y) + y · g(x, y)) .

Now a basic calculation shows that {(~Vi, Ci)} satisfy (1).
Since the difference vectors are of unit length and perpendicular to the

respective yi, by Theorem 1, Y is the minimizer, since there is exactly one
combinatorial structure for three points.

2. Lines and equidistant curves

In the proof for four points we will be using vector fields tangent to families
of lines and equidistant curves, so we first construct such vector fields and
examine their divergences. The formula for a hyperbolic line right of the
y-axis, perpendicular to the x-axis is given by

f(a, t) = (a−
√

a2 − 1 cos t,
√

a2 − 1 sin t),

where (a, 0) is the center of the Euclidean circle representing the hyperbolic
line given by the standard formula

a(x, y) =
x2 + y2 + 1

2x
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and the tangent vectors are given by

F (a, t) =
〈√

a2 − 1 sin t,
√

a2 − 1 cos t
〉

or

F (x, y) =
〈

y,
−x2 + y2 + 1

2x

〉
.

Therefore,V1 given by

(3) V1 = − x(1− x2 − y2)√
(x2 + y2)2 + 1− 2x2 + 2y2

〈
y,
−x2 + y2 + 1

2x

〉
has constant hyperbolic length and meets the x-axis at 90◦. A straightforward
calculation shows that this vector field has divergence

div V1 =
−4y√

(x2 + y2)2 + 1− 2x2 + 2y2
.

We now define the perpendicular vector field

(4) V4 = V ⊥
1 = − x(1− x2 − y2)√

(x2 + y2)2 + 1− 2x2 + 2y2

〈
−x2 + y2 + 1

2x
,−y

〉
and it can be calculated that this field has divergence 0. We note that these
vectors are tangent to the family of curves2 equidistant from the x-axis.

3. Four vertices of a square in D

We have introduced tools useful in proving more complicated problems than
are practical with the divergence-zero criterion for paired calibration proofs
in the hyperbolic plane. In this section we will explore one interesting result
given by these tools.

Theorem 2. Let p1, p2, p3, and p4 be four points of a Euclidean square
S in the unit disk and centered at the origin. Then the length-minimizing
network connecting these four points in D is unique (up to rotation) and is
given by Figure 2(a).

Proof. We note that for four points there are exactly two combinatorial
structures and they are rotations of each other, so we will assume that {p1, p2}
and {p3, p4} are pairs of siblings and rotate the network if that is not the case.
Let {si} be the sides of S so that si intersects pi and pi−1 (where p0 = p4).
Let Y = {yi} be hyperbolic line segments so that for i = 1, 2, 3, 4, yi originates
from pi and so that y1, y2, and the x-axis meet at 120◦, as do y3, y4, and the
x-axis, and let y5 be the portion of the x-axis that lies between the Steiner
points q1 and q2. Let {Ci} be the regions separated by Y so that si borders

2Note that in the hyperbolic plane a curve C of constant distance from a given line L is
not itself a line. For more on equidistant curves, see [5, p 129].
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Figure 2. Four points

Ci. Associate with y1, . . . , y4 the unit normal ~ni that points toward Ci and
for y5, let ~n5 point toward C1. (See Figure 2(a).)

Our goal is to create vector fields F1, F2, F3, and F4 so that {(Fi, Ci)}, S,
and Y together satisfy the hypothesis of Theorem 1. To facilitate this task we
begin by constructing vector fields V1, V2, V3, and V4 around a Y centered at
the origin. Then we will translate and reflect the system (see Figure 3).

p1’

p2’

V3

V4

V2

V1

Figure 3. Building the vector fields

Let p′1 = (−t,
√

3t) and p′2 = (−t,−
√

3t), where t is the unique positive
number so that dD(p′1, p

′
2) = dD(p1, p2). Let C1

′ be the first quadrant of
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the disk, C2
′ be the region bounded by the y-axis on the right and the line

y = −
√

3 x on the left, let C3
′ be the region bounded above by the line

y = −
√

3x and below by the line y =
√

3x. Let V1 be as given in (3) and
defined on the right half-plane, V2 = 1

2 (1−x2− y2) 〈0,−1〉 defined on the left
half-plane. Let V3 =

√
3

2 (1 − x2 − y2) 〈1, 0〉 be defined on the left half-plane
and V4 be defined as in (4) on the right half-plane. The other vector fields
will be reflections of these fields.

The divergence of V1 and V4 is given above, and for V2 and V3 we have

div V2 = −y, div V3 =
√

3x.

Note that {(Vi, Ci)} satisfies (1). (In C1
′, divV1≤ 0 and divV4=0. In C2

′,
−y ≤

√
3x and in C3

′, the opposite is true:
√

3x ≤ −y.)
Now we use an isometry ϕ to translate the entire system to the left so that

p′1 7→ p1 and p′2 7→ p2. For each i we denote V̂i = ϕ(Vi). Let F1 be the
union of V̂1 and V̂2 on the left half-plane and as the reflection of that on the
right half-plane. Let F2 be the union of V̂3 and V̂4, F3 be the reflection of
F1 across the x-axis, and F4 be the reflection of F2 across the y-axis. Since
isometries preserve length, angle, and divergence, we have all the properties
we need to prove minimization.

We note that (F1−F2), (F2−F3), (F3−F4), (F1−F4), and (F1−F3)
are unit length and are normal to y1, . . . , y5 respectively. Thus, by Theorem 1,
Y is the minimizer for its combinatorial structure. Since the only other com-
binatorial structure is a rotation of that of Y , we say that Y is the unique
minimizer up to rotation. �
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